scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Minimum probability of error for asynchronous Gaussian multiple-access channels

01 Jan 1986-IEEE Transactions on Information Theory (IEEE Press)-Vol. 32, Iss: 1, pp 85-96
TL;DR: The results show that the proposed multiuser detectors afford important performance gains over conventional single-user systems, in which the signal constellation carries the entire burden of complexity required to achieve a given performance level.
Abstract: Consider a Gaussian multiple-access channel shared by K users who transmit asynchronously independent data streams by modulating a set of assigned signal waveforms. The uncoded probability of error achievable by optimum multiuser detectors is investigated. It is shown that the K -user maximum-likelihood sequence detector consists of a bank of single-user matched filters followed by a Viterbi algorithm whose complexity per binary decision is O(2^{K}) . The upper bound analysis of this detector follows an approach based on the decomposition of error sequences. The issues of convergence and tightness of the bounds are examined, and it is shown that the minimum multiuser error probability is equivalent in the Iow-noise region to that of a single-user system with reduced power. These results show that the proposed multiuser detectors afford important performance gains over conventional single-user systems, in which the signal constellation carries the entire burden of complexity required to achieve a given performance level.
Citations
More filters
Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
TL;DR: Simulation results demonstrate that the proposed low complexity iterative receivers structure for interference suppression and decoding offers significant performance gain over the traditional noniterative receiver structure.
Abstract: The presence of both multiple-access interference (MAI) and intersymbol interference (ISI) constitutes a major impediment to reliable communications in multipath code-division multiple-access (CDMA) channels. In this paper, an iterative receiver structure is proposed for decoding multiuser information data in a convolutionally coded asynchronous multipath DS-CDMA system. The receiver performs two successive soft-output decisions, achieved by a soft-input soft-output (SISO) multiuser detector and a bank of single-user SISO channel decoders, through an iterative process. At each iteration, extrinsic information is extracted from detection and decoding stages and is then used as a priori information in the next iteration, just as in turbo decoding. Given the multipath CDMA channel model, a direct implementation of a sliding-window SISO multiuser detector has a prohibitive computational complexity. A low-complexity SISO multiuser detector is developed based on a novel nonlinear interference suppression technique, which makes use of both soft interference cancellation and instantaneous linear minimum mean-square error filtering. The properties of such a nonlinear interference suppressor are examined, and an efficient recursive implementation is derived. Simulation results demonstrate that the proposed low complexity iterative receiver structure for interference suppression and decoding offers significant performance gain over the traditional noniterative receiver structure. Moreover, at high signal-to-noise ratio, the detrimental effects of MAI and ISI in the channel can almost be completely overcome by iterative processing, and single-user performance can be approached.

2,098 citations


Cites background from "Minimum probability of error for as..."

  • ...But subsequently since they use the same information indirectly, they will become more and more correlated and finally the improvement through the iterations will diminish....

    [...]

Book
30 Nov 2008
TL;DR: The goal of this paper is to present in a comprehensive fashion the theory underlying bit-interleaved coded modulation, to provide tools for evaluating its performance, and to give guidelines for its design.
Abstract: Zehavi (1992) showed that the performance of coded modulation over a Rayleigh fading channel can be improved by bit-wise interleaving the encoder output and by using an appropriate soft-decision metric as an input to a Viterbi decoder. The goal of this paper is to present in a comprehensive fashion the theory underlying bit-interleaved coded modulation, to provide tools for evaluating its performance, and to give guidelines for its design.

2,098 citations

Journal ArticleDOI
TL;DR: Under the assumptions of symbol-synchronous transmissions and white Gaussian noise, the authors analyze the detection mechanism at the receiver, comparing different detectors by their bit error rates in the low-background-noise region and by their worst-case behavior in a near-far environment.
Abstract: Under the assumptions of symbol-synchronous transmissions and white Gaussian noise, the authors analyze the detection mechanism at the receiver, comparing different detectors by their bit error rates in the low-background-noise region and by their worst-case behavior in a near-far environment where the received energies of the users are not necessarily similar. Optimum multiuser detection achieves important performance gains over conventional single-user detection at the expense of computational complexity that grows exponentially with the number of users. It is shown that in the synchronous case the performance achieved by linear multiuser detectors is similar to that of optimum multiuser detection. Attention is focused on detectors whose linear memoryless transformation is a generalized inverse of the matrix of signature waveform crosscorrelations, and on the optimum linear detector. It is shown that the generalized inverse detectors exhibit the same degree of near-far resistance as the optimum multiuser detectors. The optimum linear detector is obtained. >

1,609 citations

Journal ArticleDOI
TL;DR: It is concluded that MMSE detectors can alleviate the need for stringent power control in CDMA systems, and may be a practical alternative to the matched filter receiver.
Abstract: We consider interference suppression for direct-sequence spread-spectrum code-division multiple-access (CDMA) systems using the minimum mean squared error (MMSE) performance criterion. The conventional matched filter receiver suffers from the near-far problem, and requires strict power control (typically involving feedback from receiver to transmitter) for acceptable performance. Multiuser detection schemes previously proposed mitigate the near-far problem, but are complex and require explicit knowledge or estimates of the interference parameters. In this paper, we present and analyze several new MMSE interference suppression schemes, which have the advantage of being near-far resistant (to varying degrees, depending on their complexity), and can be implemented adaptively when interference parameters are unknown and/or time-varying, Numerical results are provided that show that these schemes offer significant performance gains relative to the matched filter receiver. We conclude that MMSE detectors can alleviate the need for stringent power control. In CDMA systems, and may be a practical alternative to the matched filter receiver. >

1,494 citations

References
More filters
Journal ArticleDOI
01 Mar 1973
TL;DR: This paper gives a tutorial exposition of the Viterbi algorithm and of how it is implemented and analyzed, and increasing use of the algorithm in a widening variety of areas is foreseen.
Abstract: The Viterbi algorithm (VA) is a recursive optimal solution to the problem of estimating the state sequence of a discrete-time finite-state Markov process observed in memoryless noise. Many problems in areas such as digital communications can be cast in this form. This paper gives a tutorial exposition of the algorithm and of how it is implemented and analyzed. Applications to date are reviewed. Increasing use of the algorithm in a widening variety of areas is foreseen.

5,995 citations

Journal ArticleDOI
TL;DR: In this paper, a maximum likelihood sequence estimator for a digital pulse-amplitude-modulated sequence in the presence of finite intersymbol interference and white Gaussian noise is developed, which comprises a sampled linear filter, called a whitened matched filter, and a recursive nonlinear processor, called the Viterbi algorithm.
Abstract: A maximum-likelihood sequence estimator for a digital pulse-amplitude-modulated sequence in the presence of finite intersymbol interference and white Gaussian noise is developed, The structure comprises a sampled linear filter, called a whitened matched filter, and a recursive nonlinear processor, called the Viterbi algorithm. The outputs of the whitened matched filter, sampled once for each input symbol, are shown to form a set of sufficient statistics for estimation of the input sequence, a fact that makes obvious some earlier results on optimum linear processors. The Viterbi algorithm is easier to implement than earlier optimum nonlinear processors and its performance can be straightforwardly and accurately estimated. It is shown that performance (by whatever criterion) is effectively as good as could be attained by any receiver structure and in many cases is as good as if intersymbol interference were absent. Finally, a simplified but effectively optimum algorithm suitable for the most popular partial-response schemes is described.

2,667 citations

Book
01 Jan 1979
TL;DR: The principles of digital communication and coding are presented and a practical application of these principles, called "Principles of Digital Communication and coding", are presented.
Abstract: Principles of digital communication and coding , Principles of digital communication and coding , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

1,189 citations

Journal ArticleDOI
G. Ungerboeck1
TL;DR: A uniform receiver structure for linear carrier-modulated data-transmission systems is derived which for decision making uses a modified version of the Viterbi algorithm, which operates directly on the output signal of a complex matched filter and requires no squaring operations.
Abstract: A new look is taken at maximum-likelihood sequence estimation in the presence of intersymbol interference. A uniform receiver structure for linear carrier-modulated data-transmission systems is derived which for decision making uses a modified version of the Viterbi algorithm. The algorithm operates directly on the output signal of a complex matched filter and, in contrast to the original algorithm, requires no squaring operations; only multiplications by discrete pulse-amplitude values are needed. Decoding of redundantly coded sequences is included in the consideration. The reason and limits for the superior error performance of the receiver over a conventional receiver employing zero-forcing equalization and symbol-by-symbol decision making are explained. An adjustment algorithm for jointly approximating the matched filter by a transversal filter, estimating intersymbol interference present at the transversal filter output, and controlling the demodulating carrier phase and the sample timing, is presented.

821 citations

Journal ArticleDOI
TL;DR: A maximum likelihood estimator for digital sequences disturbed by Gaussian noise, intersymbol interference and interchannel interference is derived and it appears that, under a certain condition, the error performance is asymptotically as good as if both ISI and ICI were absent.
Abstract: A maximum likelihood (ML) estimator for digital sequences disturbed by Gaussian noise, intersymbol interference (ISI) and interchannel interference (ICI) is derived It is shown that the sampled outputs of the multiple matched filter (MMF) form a set of sufficient statistics for estimating the input vector sequence Two ML vector sequence estimation algorithms are presented One makes use of the sampled output data of the multiple whitened matched filter and is called the vector Viterbi algorithm The other one is a modification of the vector Viterbi algorithm and uses directly the sampled output of the MMF It appears that, under a certain condition, the error performance is asymptotically as good as if both ISI and ICI were absent

299 citations