scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Minimum redundancy feature selection from microarray gene expression data.

01 Apr 2005-Journal of Bioinformatics and Computational Biology (Imperial College Press)-Vol. 3, Iss: 2, pp 185-205
TL;DR: How to selecting a small subset out of the thousands of genes in microarray data is important for accurate classification of phenotypes.
Abstract: How to selecting a small subset out of the thousands of genes in microarray data is important for accurate classification of phenotypes. Widely used methods typically rank genes according to their ...
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the maximal statistical dependency criterion based on mutual information (mRMR) was proposed to select good features according to the maximal dependency condition. But the problem of feature selection is not solved by directly implementing mRMR.
Abstract: Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we first derive an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for first-order incremental feature selection. Then, we present a two-stage feature selection algorithm by combining mRMR and other more sophisticated feature selectors (e.g., wrappers). This allows us to select a compact set of superior features at very low cost. We perform extensive experimental comparison of our algorithm and other methods using three different classifiers (naive Bayes, support vector machine, and linear discriminate analysis) and four different data sets (handwritten digits, arrhythmia, NCI cancer cell lines, and lymphoma tissues). The results confirm that mRMR leads to promising improvement on feature selection and classification accuracy.

8,078 citations

Journal ArticleDOI
TL;DR: A basic taxonomy of feature selection techniques is provided, providing their use, variety and potential in a number of both common as well as upcoming bioinformatics applications.
Abstract: Feature selection techniques have become an apparent need in many bioinformatics applications. In addition to the large pool of techniques that have already been developed in the machine learning and data mining fields, specific applications in bioinformatics have led to a wealth of newly proposed techniques. In this article, we make the interested reader aware of the possibilities of feature selection, providing a basic taxonomy of feature selection techniques, and discussing their use, variety and potential in a number of both common as well as upcoming bioinformatics applications. Contact: yvan.saeys@psb.ugent.be Supplementary information: http://bioinformatics.psb.ugent.be/supplementary_data/yvsae/fsreview

4,706 citations

Journal ArticleDOI
TL;DR: The objective is to provide a generic introduction to variable elimination which can be applied to a wide array of machine learning problems and focus on Filter, Wrapper and Embedded methods.

3,517 citations

Proceedings Article
06 Dec 2010
TL;DR: A new robust feature selection method with emphasizing joint l2,1-norm minimization on both loss function and regularization is proposed, which has been applied into both genomic and proteomic biomarkers discovery.
Abstract: Feature selection is an important component of many machine learning applications. Especially in many bioinformatics tasks, efficient and robust feature selection methods are desired to extract meaningful features and eliminate noisy ones. In this paper, we propose a new robust feature selection method with emphasizing joint l2,1-norm minimization on both loss function and regularization. The l2,1-norm based loss function is robust to outliers in data points and the l2,1-norm regularization selects features across all data points with joint sparsity. An efficient algorithm is introduced with proved convergence. Our regression based objective makes the feature selection process more efficient. Our method has been applied into both genomic and proteomic biomarkers discovery. Extensive empirical studies are performed on six data sets to demonstrate the performance of our feature selection method.

1,697 citations

Journal ArticleDOI
04 Sep 2014-Nature
TL;DR: The gut microbiome in liver cirrhosis is characterized by comparing 98 patients and 83 healthy control individuals and on the basis of only 15 biomarkers, a highly accurate patient discrimination index is created and validated on an independent cohort, suggesting microbiota-targeted biomarkers may be a powerful tool for diagnosis of different diseases.
Abstract: Liver cirrhosis occurs as a consequence of many chronic liver diseases that are prevalent worldwide. Here we characterize the gut microbiome in liver cirrhosis by comparing 98 patients and 83 healthy control individuals. We build a reference gene set for the cohort containing 2.69 million genes, 36.1% of which are novel. Quantitative metagenomics reveals 75,245 genes that differ in abundance between the patients and healthy individuals (false discovery rate < 0.0001) and can be grouped into 66 clusters representing cognate bacterial species; 28 are enriched in patients and 38 in control individuals. Most (54%) of the patient-enriched, taxonomically assigned species are of buccal origin, suggesting an invasion of the gut from the mouth in liver cirrhosis. Biomarkers specific to liver cirrhosis at gene and function levels are revealed by a comparison with those for type 2 diabetes and inflammatory bowel disease. On the basis of only 15 biomarkers, a highly accurate patient discrimination index is created and validated on an independent cohort. Thus microbiota-targeted biomarkers may be a powerful tool for diagnosis of different diseases. Invasion of the gut by oral bacteria in liver cirrhosis. Previous work has revealed an association between liver complications such as cirrhosis and the gut microbiome. Lanjuan Li and colleagues undertook a microbiome-wide association study of stool samples from 98 liver cirrhosis patients and 83 healthy controls. Quantitative metagenomics analysis revealed 75,245 genes that were significantly different in abundance between the two groups, many of which could be grouped into 66 clusters that represent cognate bacterial species. Of these, 28 species were enriched in liver cirrhosis patients and most were of buccal origin (mostly Veillonella and streptococci). The identified markers were unique liver cirrhosis-specific genes and the authors identify a set of just 15 of these genes that could form the basis of a highly accurate discrimination index that could be used as a diagnostic tool.

1,542 citations

References
More filters
Journal ArticleDOI
15 Oct 1999-Science
TL;DR: A generic approach to cancer classification based on gene expression monitoring by DNA microarrays is described and applied to human acute leukemias as a test case and suggests a general strategy for discovering and predicting cancer classes for other types of cancer, independent of previous biological knowledge.
Abstract: Although cancer classification has improved over the past 30 years, there has been no general approach for identifying new cancer classes (class discovery) or for assigning tumors to known classes (class prediction). Here, a generic approach to cancer classification based on gene expression monitoring by DNA microarrays is described and applied to human acute leukemias as a test case. A class discovery procedure automatically discovered the distinction between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without previous knowledge of these classes. An automatically derived class predictor was able to determine the class of new leukemia cases. The results demonstrate the feasibility of cancer classification based solely on gene expression monitoring and suggest a general strategy for discovering and predicting cancer classes for other types of cancer, independent of previous biological knowledge.

12,530 citations

Journal ArticleDOI
03 Feb 2000-Nature
TL;DR: It is shown that there is diversity in gene expression among the tumours of DLBCL patients, apparently reflecting the variation in tumour proliferation rate, host response and differentiation state of the tumour.
Abstract: 12 Pathology and Microbiology, and 13 Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin's lymphoma, is clinically heterogeneous: 40% of patients respond well to current therapy and have prolonged survival, whereas the remainder succumb to the disease. We proposed that this variability in natural history reflects unrecognized molecular heterogeneity in the tumours. Using DNA microarrays, we have conducted a systematic characterization of gene expression in B-cell malignancies. Here we show that there is diversity in gene expression among the tumours of DLBCL patients, apparently reflecting the variation in tumour proliferation rate, host response and differentiation state of the tumour. We identified two molecularly distinct forms of DLBCL which had gene expression patterns indicative of different stages of B-cell differentiation. One type expressed genes characteristic of germinal centre B cells ('germinal centre B-like DLBCL'); the second type expressed genes normally induced during in vitro activation of peripheral blood B cells ('activated B-like DLBCL'). Patients with germinal centre B-like DLBCL had a significantly better overall survival than those with activated B-like DLBCL. The molecular classification of tumours on the basis of gene expression can thus identify previously undetected and clinically significant subtypes of cancer.

9,493 citations

Journal ArticleDOI
TL;DR: The wrapper method searches for an optimal feature subset tailored to a particular algorithm and a domain and compares the wrapper approach to induction without feature subset selection and to Relief, a filter approach tofeature subset selection.

8,610 citations

Journal ArticleDOI
TL;DR: Decomposition implementations for two "all-together" multiclass SVM methods are given and it is shown that for large problems methods by considering all data at once in general need fewer support vectors.
Abstract: Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary classifiers. Some authors also proposed methods that consider all classes at once. As it is computationally more expensive to solve multiclass problems, comparisons of these methods using large-scale problems have not been seriously conducted. Especially for methods solving multiclass SVM in one step, a much larger optimization problem is required so up to now experiments are limited to small data sets. In this paper we give decomposition implementations for two such "all-together" methods. We then compare their performance with three methods based on binary classifications: "one-against-all," "one-against-one," and directed acyclic graph SVM (DAGSVM). Our experiments indicate that the "one-against-one" and DAG methods are more suitable for practical use than the other methods. Results also show that for large problems methods by considering all data at once in general need fewer support vectors.

6,562 citations

Journal ArticleDOI
TL;DR: In this paper, a two-way clustering algorithm was applied to both the genes and the tissues, revealing broad coherent patterns that suggest a high degree of organization underlying gene expression in these tissues.
Abstract: Oligonucleotide arrays can provide a broad picture of the state of the cell, by monitoring the expression level of thousands of genes at the same time. It is of interest to develop techniques for extracting useful information from the resulting data sets. Here we report the application of a two-way clustering method for analyzing a data set consisting of the expression patterns of different cell types. Gene expres- sion in 40 tumor and 22 normal colon tissue samples was analyzed with an Affymetrix oligonucleotide array comple- mentary to more than 6,500 human genes. An efficient two- way clustering algorithm was applied to both the genes and the tissues, revealing broad coherent patterns that suggest a high degree of organization underlying gene expression in these tissues. Coregulated families of genes clustered together, as demonstrated for the ribosomal proteins. Clustering also separated cancerous from noncancerous tissue and cell lines from in vivo tissues on the basis of subtle distributed patterns of genes even when expression of individual genes varied only slightly between the tissues. Two-way clustering thus may be of use both in classifying genes into functional groups and in classifying tissues based on gene expression.

4,131 citations