scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Mining concept-drifting data streams using ensemble classifiers

TL;DR: This paper proposes a general framework for mining concept-drifting data streams using weighted ensemble classifiers, and shows that the proposed methods have substantial advantage over single-classifier approaches in prediction accuracy, and the ensemble framework is effective for a variety of classification models.
Abstract: Recently, mining data streams with concept drifts for actionable insights has become an important and challenging task for a wide range of applications including credit card fraud protection, target marketing, network intrusion detection, etc. Conventional knowledge discovery tools are facing two challenges, the overwhelming volume of the streaming data, and the concept drifts. In this paper, we propose a general framework for mining concept-drifting data streams using weighted ensemble classifiers. We train an ensemble of classification models, such as C4.5, RIPPER, naive Beyesian, etc., from sequential chunks of the data stream. The classifiers in the ensemble are judiciously weighted based on their expected classification accuracy on the test data under the time-evolving environment. Thus, the ensemble approach improves both the efficiency in learning the model and the accuracy in performing classification. Our empirical study shows that the proposed methods have substantial advantage over single-classifier approaches in prediction accuracy, and the ensemble framework is effective for a variety of classification models.
Citations
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2006
TL;DR: There have been many data mining books published in recent years, including Predictive Data Mining by Weiss and Indurkhya [WI98], Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linofi [BL99].
Abstract: The book Knowledge Discovery in Databases, edited by Piatetsky-Shapiro and Frawley [PSF91], is an early collection of research papers on knowledge discovery from data. The book Advances in Knowledge Discovery and Data Mining, edited by Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy [FPSSe96], is a collection of later research results on knowledge discovery and data mining. There have been many data mining books published in recent years, including Predictive Data Mining by Weiss and Indurkhya [WI98], Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linofi [BL99], Building Data Mining Applications for CRM by Berson, Smith, and Thearling [BST99], Data Mining: Practical Machine Learning Tools and Techniques by Witten and Frank [WF05], Principles of Data Mining (Adaptive Computation and Machine Learning) by Hand, Mannila, and Smyth [HMS01], The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman [HTF01], Data Mining: Introductory and Advanced Topics by Dunham, and Data Mining: Multimedia, Soft Computing, and Bioinformatics by Mitra and Acharya [MA03]. There are also books containing collections of papers on particular aspects of knowledge discovery, such as Machine Learning and Data Mining: Methods and Applications edited by Michalski, Brakto, and Kubat [MBK98], and Relational Data Mining edited by Dzeroski and Lavrac [De01], as well as many tutorial notes on data mining in major database, data mining and machine learning conferences.

2,591 citations

Journal ArticleDOI
TL;DR: The survey covers the different facets of concept drift in an integrated way to reflect on the existing scattered state of the art and aims at providing a comprehensive introduction to the concept drift adaptation for researchers, industry analysts, and practitioners.
Abstract: Concept drift primarily refers to an online supervised learning scenario when the relation between the input data and the target variable changes over time. Assuming a general knowledge of supervised learning in this article, we characterize adaptive learning processes; categorize existing strategies for handling concept drift; overview the most representative, distinct, and popular techniques and algorithms; discuss evaluation methodology of adaptive algorithms; and present a set of illustrative applications. The survey covers the different facets of concept drift in an integrated way to reflect on the existing scattered state of the art. Thus, it aims at providing a comprehensive introduction to the concept drift adaptation for researchers, industry analysts, and practitioners.

2,374 citations


Cites background or methods from "Mining concept-drifting data stream..."

  • ...2004], [Wang et al. 2003] [Bifet and Gavalda 2006], [Kuncheva and Zliobaite 2009] Model Management...

    [...]

  • ...…Model Adaptation Model Specific [Hulten et al. 2001], [Gama et al. 2006], [Harries et al. 1998] Model Independent [Wald 1947], [Gama et al. 2004], [Wang et al. 2003] [Bifet and Gavalda 2006], [Kuncheva and Zliobaite 2009] Model Management Single Model [Hulten et al. 2001], [Gama et al. 2006],…...

    [...]

Proceedings ArticleDOI
26 Aug 2001
TL;DR: An efficient algorithm for mining decision trees from continuously-changing data streams, based on the ultra-fast VFDT decision tree learner is proposed, called CVFDT, which stays current while making the most of old data by growing an alternative subtree whenever an old one becomes questionable, and replacing the old with the new when the new becomes more accurate.
Abstract: Most statistical and machine-learning algorithms assume that the data is a random sample drawn from a stationary distribution. Unfortunately, most of the large databases available for mining today violate this assumption. They were gathered over months or years, and the underlying processes generating them changed during this time, sometimes radically. Although a number of algorithms have been proposed for learning time-changing concepts, they generally do not scale well to very large databases. In this paper we propose an efficient algorithm for mining decision trees from continuously-changing data streams, based on the ultra-fast VFDT decision tree learner. This algorithm, called CVFDT, stays current while making the most of old data by growing an alternative subtree whenever an old one becomes questionable, and replacing the old with the new when the new becomes more accurate. CVFDT learns a model which is similar in accuracy to the one that would be learned by reapplying VFDT to a moving window of examples every time a new example arrives, but with O(1) complexity per example, as opposed to O(w), where w is the size of the window. Experiments on a set of large time-changing data streams demonstrate the utility of this approach.

1,790 citations


Cites background from "Mining concept-drifting data stream..."

  • ...This is referred to as data evolution, dynamic stream, time-changing data, or concept-drifting data [3, 69, 78, 157]....

    [...]

  • ...[78] and Aggarwal [3, 4] are representative of the first track and much work [69, 157, 49, 51] belongs to the second track....

    [...]

  • ...introduced a framework [157] that can also deal with time-changing streams by using weighted classifier ensembles....

    [...]

Proceedings ArticleDOI
11 Apr 2016
TL;DR: This paper builds novel models for the One-Class Collaborative Filtering setting, where the goal is to estimate users' fashion-aware personalized ranking functions based on their past feedback and combines high-level visual features extracted from a deep convolutional neural network, users' past feedback, as well as evolving trends within the community.
Abstract: Building a successful recommender system depends on understanding both the dimensions of people's preferences as well as their dynamics. In certain domains, such as fashion, modeling such preferences can be incredibly difficult, due to the need to simultaneously model the visual appearance of products as well as their evolution over time. The subtle semantics and non-linear dynamics of fashion evolution raise unique challenges especially considering the sparsity and large scale of the underlying datasets. In this paper we build novel models for the One-Class Collaborative Filtering setting, where our goal is to estimate users' fashion-aware personalized ranking functions based on their past feedback. To uncover the complex and evolving visual factors that people consider when evaluating products, our method combines high-level visual features extracted from a deep convolutional neural network, users' past feedback, as well as evolving trends within the community. Experimentally we evaluate our method on two large real-world datasets from Amazon.com, where we show it to outperform state-of-the-art personalized ranking measures, and also use it to visualize the high-level fashion trends across the 11-year span of our dataset.

1,654 citations


Cites methods from "Mining concept-drifting data stream..."

  • ...Such learning algorithms include decision trees [37], SVMs [18], instance-based learning [1], etc....

    [...]

References
More filters
Book
15 Oct 1992
TL;DR: A complete guide to the C4.5 system as implemented in C for the UNIX environment, which starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting.
Abstract: From the Publisher: Classifier systems play a major role in machine learning and knowledge-based systems, and Ross Quinlan's work on ID3 and C4.5 is widely acknowledged to have made some of the most significant contributions to their development. This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use , the source code (about 8,800 lines), and implementation notes. The source code and sample datasets are also available on a 3.5-inch floppy diskette for a Sun workstation. C4.5 starts with large sets of cases belonging to known classes. The cases, described by any mixture of nominal and numeric properties, are scrutinized for patterns that allow the classes to be reliably discriminated. These patterns are then expressed as models, in the form of decision trees or sets of if-then rules, that can be used to classify new cases, with emphasis on making the models understandable as well as accurate. The system has been applied successfully to tasks involving tens of thousands of cases described by hundreds of properties. The book starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting. Advantages and disadvantages of the C4.5 approach are discussed and illustrated with several case studies. This book and software should be of interest to developers of classification-based intelligent systems and to students in machine learning and expert systems courses.

21,674 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations


"Mining concept-drifting data stream..." refers methods in this paper

  • ...5 [24], the RIPPER rule learner [6], and the Naive Bayesian method [23]....

    [...]

01 Jan 1994
TL;DR: In his new book, C4.5: Programs for Machine Learning, Quinlan has put together a definitive, much needed description of his complete system, including the latest developments, which will be a welcome addition to the library of many researchers and students.
Abstract: Algorithms for constructing decision trees are among the most well known and widely used of all machine learning methods. Among decision tree algorithms, J. Ross Quinlan's ID3 and its successor, C4.5, are probably the most popular in the machine learning community. These algorithms and variations on them have been the subject of numerous research papers since Quinlan introduced ID3. Until recently, most researchers looking for an introduction to decision trees turned to Quinlan's seminal 1986 Machine Learning journal article [Quinlan, 1986]. In his new book, C4.5: Programs for Machine Learning, Quinlan has put together a definitive, much needed description of his complete system, including the latest developments. As such, this book will be a welcome addition to the library of many researchers and students.

8,046 citations

Proceedings Article
Yoav Freund1, Robert E. Schapire1
03 Jul 1996
TL;DR: This paper describes experiments carried out to assess how well AdaBoost with and without pseudo-loss, performs on real learning problems and compared boosting to Breiman's "bagging" method when used to aggregate various classifiers.
Abstract: In an earlier paper, we introduced a new "boosting" algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that con- sistently generates classifiers whose performance is a little better than random guessing. We also introduced the related notion of a "pseudo-loss" which is a method for forcing a learning algorithm of multi-label concepts to concentrate on the labels that are hardest to discriminate. In this paper, we describe experiments we carried out to assess how well AdaBoost with and without pseudo-loss, performs on real learning problems. We performed two sets of experiments. The first set compared boosting to Breiman's "bagging" method when used to aggregate various classifiers (including decision trees and single attribute- value tests). We compared the performance of the two methods on a collection of machine-learning benchmarks. In the second set of experiments, we studied in more detail the performance of boosting using a nearest-neighbor classifier on an OCR problem.

7,601 citations


"Mining concept-drifting data stream..." refers background or methods in this paper

  • ...The popular approaches to creating ensembles include changing the instances used for training through techniques such as Bagging [3], Boosting [ 13 ], and pasting [4]....

    [...]

  • ...First, classifier ensembles offer a significant improvement in prediction accuracy [ 13 , 28]....

    [...]

01 Jan 1996

7,386 citations