scispace - formally typeset
Open accessJournal ArticleDOI: 10.3390/NCRNA7010018

miRCOVID-19: Potential Targets of Human miRNAs in SARS-CoV-2 for RNA-Based Drug Discovery.

02 Mar 2021-Non-Coding RNA (MDPI AG)-Vol. 7, Iss: 1, pp 18
Abstract: Sense-antisense interactions of long and short RNAs in human cells are integral to post-transcriptional gene regulation, in particular that of mRNAs by microRNAs. Many viruses, including severe acute respiratory syndrome coronavirus 2 SARS-CoV-2 (the causative agent of coronavirus disease 2019, COVID-19), have RNA genomes, and interactions between host and viral RNAs, while known to be functional in other viral diseases, have not yet been investigated in COVID-19. To remedy this gap in knowledge, we present miRCOVID-19, a computational meta-analysis framework identifying the predicted binding sites of human microRNAs along the SARS-CoV-2 RNA genome. To highlight the potential relevance of SARS-CoV-2-genome-complementary miRNAs to COVID-19 pathogenesis, we assessed their expression in COVID-19-relevant tissues using public transcriptome data. miRCOVID-19 identified 14 high-confidence mature miRNAs that are highly likely to interact with the SARS-CoV-2 genome and are expressed in diverse respiratory epithelial and immune cell types that are relevant to COVID-19 pathogenesis. As a proof of principle, we have shown that human miR-122, a previously known co-factor of another RNA virus, the hepatitis C virus (HCV) whose genome it binds as a prerequisite for pathogenesis, was predicted to also bind the SARS-CoV-2 RNA genome with high affinity, suggesting the perspective of repurposing anti-HCV RNA-based drugs, such as Miravirsen, to treat COVID-19. Our study is the first to identify all high-confidence binding sites of human miRNAs in the SARS-CoV-2 genome using multiple tools. Our work directly facilitates experimental validation of the reported targets, which would accelerate RNA-based drug discovery for COVID-19 and has the potential to provide new avenues for treating symptomatic COVID-19, and block SARS-CoV-2 replication, in humans.

... read more

Topics: RNA (61%), RNA virus (59%), Coronavirus (58%) ... show more
Citations
  More

13 results found


Open accessJournal ArticleDOI: 10.1002/CBIN.11653
Hao Ying1, Mohsen Ebrahimi2, Mona Keivan3, Seyed Esmaeil Khoshnam3  +2 moreInstitutions (4)
Abstract: Coronavirus disease 2019 (COVID-19) is the seventh member of the bat severe acute respiratory syndrome family. COVID-19 can fuse their envelopes with the host cell membranes and deliver their genetic material. COVID-19 attacks the respiratory system and stimulates the host inflammatory responses, enhances the recruitment of immune cells, and promotes angiotensin-converting enzyme 2 activities. Patients with confirmed COVID-19 may have experienced fever, dry cough, headache, dyspnea, acute kidney injury, acute respiratory distress syndrome, and acute heart injury. Several strategies such as oxygen therapy, ventilation, antibiotic or antiviral therapy, and renal replacement therapy are commonly used to decrease COVID-19-associated mortality. However, these approaches may not be good treatment options. Therefore, the search for an alternative-novel therapy is urgently important to prevent the disease progression. Recently, microRNAs (miRNAs) have emerged as a promising strategy for COVID-19. The design of oligonucleotide against the genetic material of COVID-19 might suppress virus RNA translation. Several previous studies have shown that host miRNAs play an antiviral role and improve the treatment of patients with COVID-19. miRNAs by binding to the 3'-untranslated region (UTR) or 5'-UTR of viral RNA play an important role in COVID-19-host interplay and viral replication. miRNAs interact with multiple pathways and reduce inflammatory biomarkers, thrombi formation, and tissue damage to accelerate the patient outcome. The information in this review provides a summary of the current clinical application of miRNAs for the treatments of patients with COVID-19.

... read more

Topics: Coronavirus (51%)

4 Citations


Open accessJournal ArticleDOI: 10.3390/NCRNA7020037
Walter J. Lukiw1Institutions (1)
18 Jun 2021-Non-Coding RNA
Abstract: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a member of the genus Betacoronavirus in the family Coronaviridae, possesses an unusually large single-stranded viral RNA (ssvRNA) genome of about ~29,811 nucleotides (nt) that causes severe and acute respiratory distress and a highly lethal viral pneumonia known as COVID-19. COVID-19 also presents with multiple ancillary systemic diseases and often involves cardiovascular, inflammatory, and/or neurological complications. Pathological viral genomes consisting of ssvRNA, like cellular messenger RNA (mRNA), are susceptible to attack, destruction, neutralization, and/or modulation by naturally occurring small non-coding RNAs (sncRNAs) within the host cell, some of which are known as microRNAs (miRNAs). This paper proposes that the actions of the 2650 known human miRNAs and other sncRNAs form the basis for an under-recognized and unappreciated innate-immune regulator of ssvRNA viral genome activities and have implications for the efficiency of SARS-CoV-2 invasion, infection, and replication. Recent research indicates that both miRNA and mRNA abundance, speciation, and complexity varies widely amongst human individuals, and this may: (i) In part explain the variability in the innate-immune immunological and pathophysiological response of different human individuals to the initiation and progression of SARS-CoV-2 infection in multiple tissue types; and (ii) further support our understanding of human biochemical and genetic individuality and the variable resistance of individuals to ssvRNA-mediated viral infection and disease. This commentary will briefly address current findings and concepts in this fascinating research area of non-coding RNA and innate-immunity with special reference to natural host miRNAs, SARS-CoV-2, and the current COVID-19 pandemic.

... read more

Topics: microRNA (51%), RNA (50%), Innate immune system (50%)

3 Citations


Open accessJournal ArticleDOI: 10.3390/IJMS22116094
Abstract: COVID-19 pandemic is caused by betacoronavirus SARS-CoV-2. The genome of this virus is composed of a single strand of RNA with 5' and 3'-UTR flanking a region of protein-coding ORFs closely resembling cells' mRNAs. MicroRNAs are endogenous post-transcriptional regulators that target mRNA to modulate protein expression and mediate cellular functions, including antiviral defense. In the present study, we carried out a bioinformatics screening to search for endogenous human microRNAs targeting the 3'-UTR of SARS-CoV-2. Results from the computational techniques allowed us to identify 10 potential candidates. The capacity of 3 of them, together with hsa-miR-138-5p, to target the SARS-CoV-2 3'-UTR was validated in vitro by gene reporter assays. Available information indicates that two of these microRNAs, namely, hsa-miR-3941 and hsa-miR-138-5p, combine effective targeting of SARS-CoV-2 genome with complementary antiviral or protective effects in the host cells that make them potential candidates for therapeutic treatment of most, if not all, COVID-19 variants known to date. All information obtained while conducting the present analysis is available at Open Science Framework repository.

... read more

Topics: Untranslated region (55%), In silico (51%), microRNA (51%) ... show more

2 Citations


Open accessJournal ArticleDOI: 10.1186/S40001-021-00544-4
Abstract: The aim of this study was to evaluate the expression of four up/down-regulated inflammatory miRNAs and their mRNA targets in the serum samples of COVID-19 patients with different grades. Also, we investigated the relative expression of these miRNAs and mRNAs during hospitalization. In this cross-sectional study, 5 mL of blood sample were taken from COVID-19 patients with different grades and during hospitalization from several health centers of Yazd, Tehran, and Zahedan province of Iran from December 20, 2020 to March 2, 2021. The relative expression of miRNAs and mRNAs was evaluated by q-PCR. We found that the relative expression of hsa-miR-31-3p, hsa-miR-29a-3p, and hsa-miR-126-3p was significantly decreased and the relative expression of their mRNA targets (ZMYM5, COL5A3, and CAMSAP1) was significantly increased with the increase of disease grade. Conversely, the relative expression of hsa-miR-17-3p was significantly increased and its mRNA target (DICER1) was significantly decreased with the increase of disease grade. This pattern was exactly seen during hospitalization of COVID-19 patients who did not respond to treatment. In COVID-19 patients who responded to treatment, the expression of selected miRNAs and their mRNA targets returned to the normal level. A negative significant correlation was seen between (1) the expression of hsa-miR-31-3p and ZMYM5, (2) hsa-miR-29a-3p and COL5A3, (3) hsa-miR-126-3p and CAMSAP1, and (4) hsa-miR-17-3p and DICER1 in COVID-19 patients with any grade (P < 0.05) and during hospitalization. In this study, we gained a more accurate understanding of the expression of up/down-regulated inflammatory miRNAs in the blood of COVID-19 patients. The obtained data may help us in the diagnosis and prognosis of COVID-19. Trial registration: The ethics committee of Zahedan University of Medical Sciences, Zahedan, Iran. (Ethical Code: IR.ZAUMS.REC.1399.316) was registered for this project.

... read more

2 Citations


Journal ArticleDOI: 10.1016/J.TIG.2021.10.002
30 Oct 2021-Trends in Genetics
Abstract: Alterations in microRNAs (miRNAs) expression are causative in the initiation and progression of human cancers. The molecular events responsible for the widespread differential expression of miRNAs in malignancy are exemplified by their location in cancer-associated genomic regions, epigenetic mechanisms, transcriptional dysregulation, chemical modifications and editing, and alterations in miRNA biogenesis proteins. The classical miRNA function is synonymous with post-transcriptional repression of target protein genes. However, several studies have reported miRNAs functioning outside this paradigm and some of these novel modes of regulation of gene expression have been implicated in cancers. Here, we summarize key aspects of miRNA involvement in cancer, with a special focus on these lesser-studied mechanisms of action.

... read more

1 Citations


References
  More

39 results found


Journal ArticleDOI: 10.1016/S0022-2836(05)80360-2
Stephen F. Altschul1, Warren Gish1, Webb Miller2, Eugene W. Myers3  +1 moreInstitutions (3)
Abstract: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP scores allow an analysis of the performance of this method as well as the statistical significance of alignments it generates. The basic algorithm is simple and robust; it can be implemented in a number of ways and applied in a variety of contexts including straight-forward DNA and protein sequence database searches, motif searches, gene identification searches, and in the analysis of multiple regions of similarity in long DNA sequences. In addition to its flexibility and tractability to mathematical analysis, BLAST is an order of magnitude faster than existing sequence comparison tools of comparable sensitivity.

... read more

Topics: Substitution matrix (59%), Sim4 (58%), Alignment-free sequence analysis (57%) ... show more

81,150 Citations


Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTQ033
Aaron R. Quinlan1, Ira M. Hall1Institutions (1)
15 Mar 2010-Bioinformatics
Abstract: Motivation: Testing for correlations between different sets of genomic features is a fundamental task in genomics research. However, searching for overlaps between features with existing webbased methods is complicated by the massive datasets that are routinely produced with current sequencing technologies. Fast and flexible tools are therefore required to ask complex questions of these data in an efficient manner. Results: This article introduces a new software suite for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (BED) and General Feature Format (GFF) format. BEDTools also supports the comparison of sequence alignments in BAM format to both BED and GFF features. The tools are extremely efficient and allow the user to compare large datasets (e.g. next-generation sequencing data) with both public and custom genome annotation tracks. BEDTools can be combined with one another as well as with standard UNIX commands, thus facilitating routine genomics tasks as well as pipelines that can quickly answer intricate questions of large genomic datasets. Availability and implementation: BEDTools was written in C++. Source code and a comprehensive user manual are freely available at http://code.google.com/p/bedtools

... read more

Topics: Software suite (52%), Source code (50%)

14,088 Citations


Open accessJournal ArticleDOI: 10.1093/NAR/GKT1181
Ana Kozomara1, Sam Griffiths-Jones1Institutions (1)
Abstract: We describe an update of the miRBase database (http://www.mirbase.org/), the primary microRNA sequence repository. The latest miRBase release (v20, June 2013) contains 24 521 microRNA loci from 206 species, processed to produce 30 424 mature microRNA products. The rate of deposition of novel microRNAs and the number of researchers involved in their discovery continue to increase, driven largely by small RNA deep sequencing experiments. In the face of these increases, and a range of microRNA annotation methods and criteria, maintaining the quality of the microRNA sequence data set is a significant challenge. Here, we describe recent developments of the miRBase database to address this issue. In particular, we describe the collation and use of deep sequencing data sets to assign levels of confidence to miRBase entries. We now provide a high confidence subset of miRBase entries, based on the pattern of mapped reads. The high confidence microRNA data set is available alongside the complete microRNA collection at http://www.mirbase.org/. We also describe embedding microRNA-specific Wikipedia pages on the miRBase website to encourage the microRNA community to contribute and share textual and functional information.

... read more

Topics: MiRBase (79%)

4,276 Citations


Open accessJournal ArticleDOI: 10.1093/NAR/GKQ1027
Ana Kozomara1, Sam Griffiths-Jones1Institutions (1)
Abstract: miRBase is the primary online repository for all microRNA sequences and annotation. The current release (miRBase 16) contains over 15,000 microRNA gene loci in over 140 species, and over 17,000 distinct mature microRNA sequences. Deep-sequencing technologies have delivered a sharp rise in the rate of novel microRNA discovery. We have mapped reads from short RNA deep-sequencing experiments to microRNAs in miRBase and developed web interfaces to view these mappings. The user can view all read data associated with a given microRNA annotation, filter reads by experiment and count, and search for microRNAs by tissue- and stage-specific expression. These data can be used as a proxy for relative expression levels of microRNA sequences, provide detailed evidence for microRNA annotations and alternative isoforms of mature microRNAs, and allow us to revisit previous annotations. miRBase is available online at: http://www.mirbase.org/.

... read more

Topics: MiRBase (82%), MicroRNA Gene (65%)

3,430 Citations


Open accessJournal ArticleDOI: 10.1126/SCIENCE.1113329
02 Sep 2005-Science
Abstract: MicroRNAs are small RNA molecules that regulate messenger RNA (mRNA) expression. MicroRNA 122 (miR-122) is specifically expressed and highly abundant in the human liver. We show that the sequestration of miR-122 in liver cells results in marked loss of autonomously replicating hepatitis C viral RNAs. A genetic interaction between miR-122 and the 5' noncoding region of the viral genome was revealed by mutational analyses of the predicted microRNA binding site and ectopic expression of miR-122 molecules containing compensatory mutations. Studies with replication-defective RNAs suggested that miR-122 did not detectably affect mRNA translation or RNA stability. Therefore, miR-122 is likely to facilitate replication of the viral RNA, suggesting that miR-122 may present a target for antiviral intervention.

... read more

Topics: RNA silencing (70%), Small RNA (70%), RNA (68%) ... show more

2,370 Citations