scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mitochondrial complex I deficiency in Parkinson's disease.

03 Jun 1989-The Lancet (Adv Neurol)-Vol. 60, Iss: 8649, pp 1269-1269
About: This article is published in The Lancet.The article was published on 1989-06-03. It has received 1548 citations till now. The article focuses on the topics: NAD(P)H Dehydrogenase (Quinone) & Substantia nigra.
Citations
More filters
Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: Treatments targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria hold great promise in ageing-related neurodegenerative diseases.
Abstract: Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.

5,368 citations

Journal ArticleDOI
TL;DR: Results indicated a specific defect of Complex I activity in the substantia nigra of patients with Parkinson's disease, which adds further support to the proposition that Parkinson’s disease may be due to an environmental toxin with action(s) similar to those of MPTP.
Abstract: The structure and function of mitochondrial respiratory-chain enzyme proteins were studied postmortem in the substantia nigra of nine patients with Parkinson's disease and nine matched controls. Total protein and mitochondrial mass were similar in the two groups. NADH-ubiquinone reductase (Complex I) and NADH cytochrome c reductase activities were significantly reduced, whereas succinate cytochrome c reductase activity was normal. These results indicated a specific defect of Complex I activity in the substantia nigra of patients with Parkinson's disease. This biochemical defect is the same as that produced in animal models of parkinsonism by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and adds further support to the proposition that Parkinson's disease may be due to an environmental toxin with action(s) similar to those of MPTP.

2,266 citations

Journal ArticleDOI
21 Jan 2015-Neuron
TL;DR: Biochemical and genetic studies reveal that the products of two genes that are mutated in autosomal recessive parkinsonism, PINK1 and Parkin, normally work together in the same pathway to govern mitochondrial quality control, bolstering previous evidence that mitochondrial damage is involved in Parkinson's disease.

1,544 citations

Journal ArticleDOI
TL;DR: The molecular properties of the synucleins, the different diseases characterized by the accumulation of α-synuclein, and the possible mechanisms by which dysfunction ofα- synuclein might lead to neurodegeneration are reviewed.
Abstract: In recent years, two developments have imparted a new direction to research on the aetiology and pathogenesis of Parkinson's disease. First, the discovery that a missense mutation in the α-synuclein gene is a rare genetic cause of Parkinson's disease. Second, the identification of the α-synuclein protein as the main component of Lewy bodies and Lewy neurites, the defining neuropathological characteristics of all cases of Parkinson's and several other diseases. The filamentous inclusions of multiple system atrophy are also made of α-synuclein. These findings have placed α-synuclein dysfunction at the centre of several common neurodegenerative diseases. Here, I review the molecular properties of the synucleins, the different diseases characterized by the accumulation of α-synuclein, and the possible mechanisms by which dysfunction of α-synuclein might lead to neurodegeneration.

1,288 citations

Journal ArticleDOI
TL;DR: Recent studies on redox signalling in the regulation of autophagy are highlighted, in the context of the basic mechanisms of mitophagy, and the impact ofautophagy on mitochondrial function and accumulation of reactive species is discussed.
Abstract: Reactive oxygen and nitrogen species change cellular responses through diverse mechanisms that are now being defined. At low levels, they are signalling molecules, and at high levels, they damage organelles, particularly the mitochondria. Oxidative damage and the associated mitochondrial dysfunction may result in energy depletion, accumulation of cytotoxic mediators and cell death. Understanding the interface between stress adaptation and cell death then is important for understanding redox biology and disease pathogenesis. Recent studies have found that one major sensor of redox signalling at this switch in cellular responses is autophagy. Autophagic activities are mediated by a complex molecular machinery including more than 30 Atg (AuTophaGy-related) proteins and 50 lysosomal hydrolases. Autophagosomes form membrane structures, sequester damaged, oxidized or dysfunctional intracellular components and organelles, and direct them to the lysosomes for degradation. This autophagic process is the sole known mechanism for mitochondrial turnover. It has been speculated that dysfunction of autophagy may result in abnormal mitochondrial function and oxidative or nitrative stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is controlled, and the impact of autophagic dysfunction on cellular oxidative stress. The present review highlights recent studies on redox signalling in the regulation of autophagy, in the context of the basic mechanisms of mitophagy. Furthermore, we discuss the impact of autophagy on mitochondrial function and accumulation of reactive species. This is particularly relevant to degenerative diseases in which oxidative stress occurs over time, and dysfunction in both the mitochondrial and autophagic pathways play a role.

1,277 citations

Related Papers (5)