scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease.

01 Sep 2013-Free Radical Biology and Medicine (Elsevier Inc.)-Vol. 62, pp 90-101
TL;DR: Changes in mitochondrial DNA and mitochondrial dynamics, two aspects critical to the maintenance of mitochondrial homeostasis and function, in relationship with oxidative stress in the pathogenesis of AD and PD are focused on.
About: This article is published in Free Radical Biology and Medicine.The article was published on 2013-09-01 and is currently open access. It has received 582 citations till now. The article focuses on the topics: Neurodegeneration & Oxidative stress.
Citations
More filters
Journal ArticleDOI
TL;DR: The expression, post-translational modifications and functions of tau in physiology and in pathophysiology are reviewed, including the identification of new physiological roles for t Tau in the brain.
Abstract: Tau is a microtubule-associated protein that has a role in stabilizing neuronal microtubules and thus in promoting axonal outgrowth. Structurally, tau is a natively unfolded protein, is highly soluble and shows little tendency for aggregation. However, tau aggregation is characteristic of several neurodegenerative diseases known as tauopathies. The mechanisms underlying tau pathology and tau-mediated neurodegeneration are debated, but considerable progress has been made in the field of tau research in recent years, including the identification of new physiological roles for tau in the brain. Here, we review the expression, post-translational modifications and functions of tau in physiology and in pathophysiology.

1,375 citations

Journal ArticleDOI
TL;DR: Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD, but therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression.
Abstract: Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number of sources and mechanisms for the generation of reactive oxygen species (ROS) are recognized including the metabolism of dopamine itself, mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging. PD causing gene products including DJ-1, PINK1, parkin, alpha-synuclein and LRRK2 also impact in complex ways mitochondrial function leading to exacerbation of ROS generation and susceptibility to oxidative stress. Additionally, cellular homeostatic processes including the ubiquitin-proteasome system and mitophagy are impacted by oxidative stress. It is apparent that the interplay between these various mechanisms contributes to neurodegeneration in PD as a feed forward scenario where primary insults lead to oxidative stress, which damages key cellular pathogenetic proteins that in turn cause more ROS production. Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD. However, therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression. Recent knowledge gained about the specific mechanisms related to PD gene products that modulate ROS production and the response of neurons to stress may provide targeted new approaches towards neuroprotection.

1,171 citations


Additional excerpts

  • ...chondrial level [44, 45]....

    [...]

Journal ArticleDOI
TL;DR: This review summarizes molecular details of how proteasome and autophagy pathways are functionally interconnected in cells and indicates common principles and nodes of communication that can be therapeutically exploited.
Abstract: Autophagy and the ubiquitin-proteasome system are the two major quality control pathways responsible for cellular homeostasis. As such, they provide protection against age-associated changes and a plethora of human diseases. Ubiquitination is utilized as a degradation signal by both systems, albeit in different ways, to mark cargoes for proteasomal and lysosomal degradation. Both systems intersect and communicate at multiple points to coordinate their actions in proteostasis and organelle homeostasis. This review summarizes molecular details of how proteasome and autophagy pathways are functionally interconnected in cells and indicates common principles and nodes of communication that can be therapeutically exploited.

723 citations

Journal ArticleDOI
TL;DR: Nrf2 activity is tightly controlled via CRLKeap1 and SCFβ-TrCP by oxidative stress and energy-based signals, allowing it to mediate adaptive responses that restore redox homeostasis and modulate intermediary metabolism.

622 citations


Cites background from "Mitochondrial defects and oxidative..."

  • ...Oxidative stress is thought to contribute to many degenerative pathologies, including cancer, chronic inflammation, diabetes mellitus (DM), Alzheimer disease, and Parkinson disease [19, 20]....

    [...]

Journal Article
TL;DR: Parl-associated rhomboid-like (PARL-like) as mentioned in this paper is an inner mitochondrial membrane rhomboids of unknown function, whose yeast ortholog is involved in mitochondrial fusion.

616 citations

References
More filters
Journal ArticleDOI
27 Jun 1997-Science
TL;DR: A mutation was identified in the α-synuclein gene, which codes for a presynaptic protein thought to be involved in neuronal plasticity, in the Italian kindred and in three unrelated families of Greek origin with autosomal dominant inheritance for the PD phenotype.
Abstract: Parkinson's disease (PD) is a common neurodegenerative disorder with a lifetime incidence of approximately 2 percent. A pattern of familial aggregation has been documented for the disorder, and it was recently reported that a PD susceptibility gene in a large Italian kindred is located on the long arm of human chromosome 4. A mutation was identified in the α-synuclein gene, which codes for a presynaptic protein thought to be involved in neuronal plasticity, in the Italian kindred and in three unrelated families of Greek origin with autosomal dominant inheritance for the PD phenotype. This finding of a specific molecular alteration associated with PD will facilitate the detailed understanding of the pathophysiology of the disorder.

7,387 citations

Journal ArticleDOI
28 Aug 1997-Nature
TL;DR: Strong staining of Lewy bodies from idiopathic Parkinson's disease with antibodies for α-synuclein, a presynaptic protein of unknown function which is mutated in some familial cases of the disease, indicates that the LewY bodies from these two diseases may have identical compositions.
Abstract: Lewy bodies, a defining pathological characteristic of Parkinson's disease and dementia with Lewy bodies (DLB)1,2,3,4, constitute the second most common nerve cell pathology, after the neurofibrillary lesions of Alzheimer's disease. Their formation may cause neurodegeneration, but their biochemical composition is unknown. Neurofilaments and ubiquitin are present5,6,7,8, but it is unclear whether they are major components of the filamentous material of the Lewy body9,10. Here we describe strong staining of Lewy bodies from idiopathic Parkinson's disease with antibodies for α-synuclein, a presynaptic protein of unknown function which is mutated in some familial cases of the disease11. α-Synuclein may be the main component of the Lewy body in Parkinson's disease. We also show staining for α-synuclein of Lewy bodies from DLB, indicating that the Lewy bodies from these two diseases may have identical compositions.

6,923 citations

Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: Treatments targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria hold great promise in ageing-related neurodegenerative diseases.
Abstract: Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.

5,368 citations


"Mitochondrial defects and oxidative..." refers background in this paper

  • ...pathogenic A35T α-synuclein mutation had dysfunctional, degenerating mitochondria that contained α-synuclein [144], thus prompting some to speculate that α-synuclein may directly cause mitochondrial damage [145]....

    [...]

Journal ArticleDOI
09 Apr 1998-Nature
TL;DR: Mutations in the newly identified gene appear to be responsible for the pathogenesis of Autosomal recessive juvenile parkinsonism, and the protein product is named ‘Parkin’.
Abstract: Parkinson's disease is a common neurodegenerative disease with complex clinical features1. Autosomal recessive juvenile parkinsonism (AR-JP)2,3 maps to the long arm of chromosome 6 (6q25.2-q27) and is linked strongly to the markers D6S305 and D6S253 (ref. 4); the former is deleted in one Japanese AR-JP patient5. By positional cloning within this microdeletion, we have now isolated a complementary DNA clone of 2,960 base pairs with a 1,395-base-pair open reading frame, encoding a protein of 465 amino acids with moderate similarity to ubiquitin at the amino terminus and a RING-finger motif at the carboxy terminus. The gene spans more than 500 kilobases and has 12 exons, five of which (exons 3–7) are deleted in the patient. Four other AR-JP patients from three unrelated families have a deletion affecting exon 4 alone. A 4.5-kilobase transcript that is expressed in many human tissues but is abundant in the brain, including the substantia nigra, is shorter in brain tissue from one of the groups of exon-4-deleted patients. Mutations in the newly identified gene appear to be responsible for the pathogenesis of AR-JP, and we have therefore named the protein product ‘Parkin’.

4,922 citations

Journal ArticleDOI
21 May 2004-Science
TL;DR: The identification of two homozygous mutations affecting the PINK1 kinase domain in three consanguineous PARK6 families provide a direct molecular link between mitochondria and the pathogenesis of PD.
Abstract: Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra We previously mapped a locus for a rare familial form of PD to chromosome 1p36 (PARK6) Here we show that mutations in PINK1 (PTEN-induced kinase 1) are associated with PARK6 We have identified two homozygous mutations affecting the PINK1 kinase domain in three consanguineous PARK6 families: a truncating nonsense mutation and a missense mutation at a highly conserved amino acid Cell culture studies suggest that PINK1 is mitochondrially located and may exert a protective effect on the cell that is abrogated by the mutations, resulting in increased susceptibility to cellular stress These data provide a direct molecular link between mitochondria and the pathogenesis of PD

3,224 citations