scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mitochondrial DNA Methylation and Human Diseases

27 Apr 2021-International Journal of Molecular Sciences (Multidisciplinary Digital Publishing Institute)-Vol. 22, Iss: 9, pp 4594
TL;DR: In this article, the mtDNA methylation and hydroxymethylation levels of mtDNA have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases.
Abstract: Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.
Citations
More filters
Journal ArticleDOI
TL;DR: A recent review as discussed by the authors summarizes the comprehensive insights of nuclear genome cancer biomarkers and their usage in clinical practices, the intergenomic cross-talk researches that linked mitochondrial dysfunction to carcinogenesis, and the current progress of mitochondrial cancer biomarker studies and development.
Abstract: Cancer is a heterogeneous group of diseases, the progression of which demands an accumulation of genetic mutations and epigenetic alterations of the human nuclear genome or possibly in the mitochondrial genome as well. Despite modern diagnostic and therapeutic approaches to battle cancer, there are still serious concerns about the increase in death from cancer globally. Recently, a growing number of researchers have extensively focused on the burgeoning area of biomarkers development research, especially in noninvasive early cancer detection. Intergenomic cross talk has triggered researchers to expand their studies from nuclear genome-based cancer researches, shifting into the mitochondria-mediated associations with carcinogenesis. Thus, it leads to the discoveries of established and potential mitochondrial biomarkers with high specificity and sensitivity. The research field of mitochondrial DNA (mtDNA) biomarkers has the great potential to confer vast benefits for cancer therapeutics and patients in the future. This review seeks to summarize the comprehensive insights of nuclear genome cancer biomarkers and their usage in clinical practices, the intergenomic cross talk researches that linked mitochondrial dysfunction to carcinogenesis, and the current progress of mitochondrial cancer biomarker studies and development.

11 citations

Journal ArticleDOI
22 Jul 2022-Genes
TL;DR: Alzheimer’s disease is a progressive neurodegenerative disorder and represents the leading cause of cognitive impairment and dementia in older individuals, and epigenetic mechanisms, able to mediate the interaction between the genome and the environment, are emerging as important players in AD pathogenesis.
Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and represents the leading cause of cognitive impairment and dementia in older individuals throughout the world. The main hallmarks of AD include brain atrophy, extracellular deposition of insoluble amyloid-β (Aβ) plaques, and the intracellular aggregation of protein tau in neurofibrillary tangles. These pathological modifications start many years prior to clinical manifestations of disease and the spectrum of AD progresses along a continuum from preclinical to clinical phases. Therefore, identifying specific biomarkers for detecting AD at early stages greatly improves clinical management. However, stable and non-invasive biomarkers are not currently available for the early detection of the disease. In the search for more reliable biomarkers, epigenetic mechanisms, able to mediate the interaction between the genome and the environment, are emerging as important players in AD pathogenesis. Herein, we discuss altered epigenetic signatures in blood as potential peripheral biomarkers for the early detection of AD in order to help diagnosis and improve therapy.

10 citations

Journal ArticleDOI
29 Jun 2021-Cancers
TL;DR: In this paper, a review summarizes the recent findings on the mechanisms by which AdoMet and miRNA/lncRNA exert their bioactivity, providing new insights to develop innovative and more efficient anticancer strategies based on the interactions between these epigenetic modulators.
Abstract: Epigenetics includes modifications in DNA methylation, histone and chromatin structure, and expression of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Knowledge of the relationships between S-adenosylmethionine (AdoMet or SAM), the universal methyl donor for all epigenetic methylation reactions and miRNAs or lncRNAs in human cancer may provide helpful insights for the development of new end more effective anticancer therapeutic approaches. In recent literature, a complex network of mutual interconnections between AdoMet and miRNAs or lncRNAs has been reported and discussed. Indeed, ncRNAs expression may be regulated by epigenetic mechanisms such as DNA and RNA methylation and histone modifications. On the other hand, miRNAs or lncRNAs may influence the epigenetic apparatus by modulating the expression of its enzymatic components at the post-transcriptional level. Understanding epigenetic mechanisms, such as dysregulation of miRNAs/lncRNAs and DNA methylation, has become of central importance in modern research. This review summarizes the recent findings on the mechanisms by which AdoMet and miRNA/lncRNA exert their bioactivity, providing new insights to develop innovative and more efficient anticancer strategies based on the interactions between these epigenetic modulators.

7 citations

Journal ArticleDOI
TL;DR: This review focuses on the intricate dynamics of epigenetic alterations of inflammation, with emphasis on mitochondria in cancer and aging.
Abstract: Inflammation is a defining factor in disease progression; epigenetic modifications of this first line of defence pathway can affect many physiological and pathological conditions, like aging and tumorigenesis. Inflammageing, one of the hallmarks of aging, represents a chronic, low key but a persistent inflammatory state. Oxidative stress, alterations in mitochondrial DNA (mtDNA) copy number and mis-localized extra-mitochondrial mtDNA are suggested to directly induce various immune response pathways. This could ultimately perturb cellular homeostasis and lead to pathological consequences. Epigenetic remodelling of mtDNA by DNA methylation, post-translational modifications of mtDNA binding proteins and regulation of mitochondrial gene expression by nuclear DNA or mtDNA encoded non-coding RNAs, are suggested to directly correlate with the onset and progression of various types of cancer. Mitochondria are also capable of regulating immune response to various infections and tissue damage by producing pro- or anti-inflammatory signals. This occurs by altering the levels of mitochondrial metabolites and reactive oxygen species (ROS) levels. Since mitochondria are known as the guardians of the inflammatory response, it is plausible that mitochondrial epigenetics might play a pivotal role in inflammation. Hence, this review focuses on the intricate dynamics of epigenetic alterations of inflammation, with emphasis on mitochondria in cancer and aging.

7 citations

Journal ArticleDOI
TL;DR: It is shown that analyzing the mitochondrial genome beyond its sequence opens novel avenues to identify potential molecular biomarkers assisting in the diagnosis of unexplained myopathies and steps to improve enrichment for mtDNA are reported.
Abstract: Mutations in either mitochondrial DNA (mtDNA) or nuclear genes that encode mitochondrial proteins may lead to dysfunctional mitochondria, giving rise to mitochondrial diseases. Some mitochondrial myopathies, however, present without a known underlying cause. Interestingly, methylation of mtDNA has been associated with various clinical pathologies. The present study set out to assess whether mtDNA methylation could explain impaired mitochondrial function in patients diagnosed with myopathy without known underlying genetic mutations. Enhanced mtDNA methylation was indicated by pyrosequencing for muscle biopsies of 14 myopathy patients compared to four healthy controls, at selected cytosines in the Cytochrome B (CYTB) gene, but not within the displacement loop (D-loop) region. The mtDNA methylation patterns of the four healthy muscle biopsies were highly consistent and showed intriguing tissue-specific differences at particular cytosines with control skin fibroblasts cultured in vitro. Within individual myopathy patients, the overall mtDNA methylation pattern correlated well between muscle and skin fibroblasts. Despite this correlation, a pilot analysis of four myopathy and five healthy fibroblast samples did not reveal a disease-associated difference in mtDNA methylation. We did, however, detect increased expression of solute carrier family 25A26 (SLC25A26), encoding the importer of S-adenosylmethionine, together with enhanced mtDNA copy numbers in myopathy fibroblasts compared to healthy controls. To confirm that pyrosequencing indeed reflected DNA methylation and not bisulfite accessibility, mass spectrometry was employed. Although no myopathy-related differences in total amount of methylated cytosines were detected at this stage, a significant contribution of contaminating nuclear DNA (nDNA) was revealed, and steps to improve enrichment for mtDNA are reported. In conclusion, in this explorative study we show that analyzing the mitochondrial genome beyond its sequence opens novel avenues to identify potential molecular biomarkers assisting in the diagnosis of unexplained myopathies.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: Improved genome-scale mapping of methylation allows us to evaluate DNA methylation in different genomic contexts: transcriptional start sites with or without CpG islands, in gene bodies, at regulatory elements and at repeat sequences.
Abstract: DNA methylation is frequently described as a 'silencing' epigenetic mark, and indeed this function of 5-methylcytosine was originally proposed in the 1970s. Now, thanks to improved genome-scale mapping of methylation, we can evaluate DNA methylation in different genomic contexts: transcriptional start sites with or without CpG islands, in gene bodies, at regulatory elements and at repeat sequences. The emerging picture is that the function of DNA methylation seems to vary with context, and the relationship between DNA methylation and transcription is more nuanced than we realized at first. Improving our understanding of the functions of DNA methylation is necessary for interpreting changes in this mark that are observed in diseases such as cancer.

4,799 citations

Journal ArticleDOI
TL;DR: The known histone modifications are described, where they are found genomically and discussed and some of their functional consequences are discussed, concentrating mostly on transcription where the majority of characterisation has taken place.
Abstract: Chromatin is not an inert structure, but rather an instructive DNA scaffold that can respond to external cues to regulate the many uses of DNA. A principle component of chromatin that plays a key role in this regulation is the modification of histones. There is an ever-growing list of these modifications and the complexity of their action is only just beginning to be understood. However, it is clear that histone modifications play fundamental roles in most biological processes that are involved in the manipulation and expression of DNA. Here, we describe the known histone modifications, define where they are found genomically and discuss some of their functional consequences, concentrating mostly on transcription where the majority of characterisation has taken place.

4,536 citations

Journal ArticleDOI
TL;DR: The investigation into DNA methylation continues to show a rich and complex picture about epigenetic gene regulation in the central nervous system and provides possible therapeutic targets for the treatment of neuropsychiatric disorders.

2,399 citations

Journal ArticleDOI
TL;DR: Relationships between DNA methylation and histone modification have implications for understanding normal development as well as somatic cell reprogramming and tumorigenesis.
Abstract: Both DNA methylation and histone modification are involved in establishing patterns of gene repression during development. Certain forms of histone methylation cause local formation of heterochromatin, which is readily reversible, whereas DNA methylation leads to stable long-term repression. It has recently become apparent that DNA methylation and histone modification pathways can be dependent on one another, and that this crosstalk can be mediated by biochemical interactions between SET domain histone methyltransferases and DNA methyltransferases. Relationships between DNA methylation and histone modification have implications for understanding normal development as well as somatic cell reprogramming and tumorigenesis.

2,108 citations

Journal ArticleDOI
TL;DR: Although the underlying mechanisms remain largely unknown, particularly in humans, mechanistic insights are emerging from experimental model systems, which have implications for structuring future research and understanding disease and development.
Abstract: Epigenetic phenomena in animals and plants are mediated by DNA methylation and stable chromatin modifications. There has been considerable interest in whether environmental factors modulate the establishment and maintenance of epigenetic modifications, and could thereby influence gene expression and phenotype. Chemical pollutants, dietary components, temperature changes and other external stresses can indeed have long-lasting effects on development, metabolism and health, sometimes even in subsequent generations. Although the underlying mechanisms remain largely unknown, particularly in humans, mechanistic insights are emerging from experimental model systems. These have implications for structuring future research and understanding disease and development.

1,534 citations

Trending Questions (3)
What is the process of mitochondrial DNA methylation?

Mitochondrial DNA methylation involves altered methylation and hydroxymethylation levels in the mitochondrial genome, particularly in the displacement loop region, impacting gene transcription and replication, contributing to human diseases.

Can DNA methylation disrupt the regulation of mitochondrial genes?

The paper suggests that altered methylation levels of mitochondrial DNA (mtDNA) could contribute to the impairment of mitochondrial function underlying several human diseases.

What are the consequences of DNA methylation-mediated disruption of the regulation of nuclear genes responsible for mitochondrial function?

The consequences of DNA methylation-mediated disruption of the regulation of nuclear genes responsible for mitochondrial function are not mentioned in the provided paper.