scispace - formally typeset
Search or ask a question
Book ChapterDOI

Mix Design of Fly Ash Based Geopolymer Concrete

01 Jan 2015-The Indian Concrete Journal (Springer, New Delhi)-Vol. 82, Iss: 5, pp 7-14
TL;DR: In this paper, an experimental investigation has been carried out for the gradation of geopolymer concrete and a mix design procedure is proposed on the basis of quantity and fineness of fly ash, quantity of water, grading of fine aggregate, fine to total aggregate ratio.
Abstract: Geopolymer is a new development in the world of concrete in which cement is totally replaced by pozzolanic materials like fly ash and activated by highly alkaline solutions to act as a binder in the concrete mix. For the selection of suitable ingredients of geopolymer concrete to achieve desire strength at required workability, an experimental investigation has been carried out for the gradation of geopolymer concrete and a mix design procedure is proposed on the basis of quantity and fineness of fly ash, quantity of water, grading of fine aggregate, fine to total aggregate ratio. Sodium silicate solution with Na2O = 16.37 %, SiO2 = 34.35 % and H2O = 49.28 % and sodium hydroxide solution having 13 M concentration were maintained constant throughout the experiment. Water-to-geopolymer binder ratio of 0.35, alkaline solution-to-fly ash ratio of 0.35 and sodium silicate-to-sodium hydroxide ratio of 1.0 by mass were fixed on the basis of workability and cube compressive strength. Workability of geopolymer concrete was measured by flow table apparatus and cubes of 150 mm side were cast and tested for compressive strength after specified period of oven heating. The temperature of oven heating was maintained at 60 °C for 24 h duration and tested 7 days after heating. It is observed that the results of workability and compressive strength are well match with the required degree of workability and compressive strength. So, proposed method is used to design normal and standard geopolymer concrete.
Citations
More filters
01 Jan 2012
TL;DR: In this article, the effect of delayed oven-dried curing on compressive strength of geo-polymer concrete has been investigated and a mixture of sodium hydroxide solution and sodium silicate solution is used as alkali activator.
Abstract: Conventional cement concrete usage around the world is second to water. Ordinary Portland cement (OPC) is conventionally used as primary binder to produce conventional OPC concrete. The amount of carbon dioxide released during the manufacture of OPC and the extent of energy required to produce OPC are the matters of environmental concern and poor availability of power. The efforts are being made on various fronts to address these issues. Fly-ash, abundantly available byproduct of coal fired thermal power stations, having no binding properties of its own, is now being widely used as an additive binding material in manufacture of concrete .Fly-ash with alkali activators can produce effective binding material, geo-polymer, through polymerization process which can be used to develop geo-polymer concrete (GPC). The characteristics of alkali activator, decides the quality of geo-polymer and therefore affects the important properties of plastic and hardened concrete. In the present work a mixture of sodium hydroxide solution and sodium silicate solution is used as alkali activator. The present paper deals with studying the effect of delayed oven dried curing on compressive strength of Geo-polymer concrete. The laboratory investigations provides that under hot air oven curing conditions, the compressive strength of geo-polymer concrete depend on the day of curing from the date of casting. It is optimum on fourth day of oven dried curing and oven dried curing substantially enhance the compressive strength of geo polymer concrete even in the last week of testing of sample as compared to ambient curing condition. Keywordsconcrete, fly-ash, alkaline activator, delayed curing, compressive strength

1 citations

Journal ArticleDOI
TL;DR: In this paper , preliminary experiments were conducted to ascertain the strength characteristics of geopolymer concrete by partially replacing Natural Coarse Aggregate (NCA) with RAP, which was designed for the M40 grade.

1 citations

01 Jan 2014
TL;DR: In this paper, the experimental results reveal that the poisson's ratio was in the range of 0.20 to 0.24 and modulus of elasiticity was 27 to 29 N/mm 2.
Abstract: The present paper focus the experimental work done in determining the stress, strain, poisson's ratio and modulus of elasticity for geopolymer concrete. The molarity used for the preparation of geopolymer specimens was 12. The grade choosen for the investigation were M-30, M-40, M-50 and M-60. The alkaline solution used for present study is the combination of sodium silicate and sodium hydroxide solution with the ratio of 2.50. The test specimens were 150x150x150 mm cubes, 100x200 mm cylinders cured in ambient room temperature. The experimental results reveal that the poisson's ratio was in the range of 0.20 to 0.24 and modulus of elasiticity was in the range of 27 to 29 N/mm 2 . The obtained values are hence in par with the equations developed for ordinary Portland cement concrete in compression.

1 citations

Journal ArticleDOI
TL;DR: In this article , the behavior of the strength of geo-polymer concrete for M40-grade slender columns was analyzed using Universal Testing Machine (UTM) under axial load.
References
More filters
Journal ArticleDOI
TL;DR: In the last few years, technological progress has been made in the development of new materials such as "geopolymers" and new techniques, such as ''sol-gel'' as mentioned in this paper, opening up new applications and procedures and transforming ideas that have been taken for granted in inorganic chemistry.
Abstract: Spectacular technological progress has been made in the last few years through thedevelopment of new materials such as «geopolymers», and new techniques, such as «sol-gel». New state-of-the-art materials designed with the help of geopolymerization reactions are opening up new applications and procedures and transforming ideas that have been taken for granted in inorganic chemistry. High temperature techniques arc no longer necessary to obtain materials which are ceramic-like in their structures and properties

3,178 citations

Journal ArticleDOI
TL;DR: In this article, a statistical study of the effect on the polymerization process of the molar ratio of the component oxides and the water content of the mixture showed the latter to be a critical parameter.

933 citations

Journal ArticleDOI
TL;DR: In this article, fly ash-based geopolymer concrete was developed to reduce greenhouse gas emissions, and the test results showed the effects of various parameters on the properties of the concrete.
Abstract: To reduce greenhouse gas emissions, efforts are needed to develop environmentally friendly construction materials. This paper presents the development of fly ash-based geopolymer concrete. In geopolymer concrete, a by-product material rich in silicon and aluminum, such as low-calcium (ASTM C 618 Class F) fly ash, is chemically activated by a high-alkaline solution to form a paste that binds the loose coarse and fine aggregates, and other unreacted materials in the mixture. The test results presented in this paper show the effects of various parameters on the properties of geopolymer concrete. The application of geopolymer concrete and future research needs are also identified.

797 citations

Journal Article
TL;DR: In this article, the authors discuss the increase use of large volumes of fly ash and other supplementary cementing materials in the construction industry and its role in reducing these emissions, since the manufacture of portland cement contributes significantly to carbon dioxide emissions.
Abstract: Environmental issues will play a leading role in the sustainable development of the cement and concrete industry in the 21st century. The World Earth Summits in Rio de Janeiro, Brazil in 1992, and Kyoto, Japan in 1997, have made it abundantly clear that unchecked increased emission of greenhouse gases to the atmosphere is no longer environmentally and socially acceptable for overall sustainable development. The primary greenhouse gas emissions discussed in the sessions of the above conferences are carbon dioxide emissions. Other greenhouse gases such as nitrous oxide and methane, are of serious concern, but the amount involved is relatively small compared with that of carbon dioxide. Consequently, developed countries are considering regulations and mandatory quotas on the emission of these gases, and the main thrust is to stabilize these emissions to the 1990 level by the year 2010. Since the manufacture of portland cement contributes significantly to carbon dioxide emissions, this article discusses the increase use of large volumes of fly ash and other supplementary cementing materials in the construction industry and its role in reducing these emissions.

226 citations