scispace - formally typeset
Search or ask a question
Book ChapterDOI

Mix Design of Fly Ash Based Geopolymer Concrete

01 Jan 2015-The Indian Concrete Journal (Springer, New Delhi)-Vol. 82, Iss: 5, pp 7-14
TL;DR: In this paper, an experimental investigation has been carried out for the gradation of geopolymer concrete and a mix design procedure is proposed on the basis of quantity and fineness of fly ash, quantity of water, grading of fine aggregate, fine to total aggregate ratio.
Abstract: Geopolymer is a new development in the world of concrete in which cement is totally replaced by pozzolanic materials like fly ash and activated by highly alkaline solutions to act as a binder in the concrete mix. For the selection of suitable ingredients of geopolymer concrete to achieve desire strength at required workability, an experimental investigation has been carried out for the gradation of geopolymer concrete and a mix design procedure is proposed on the basis of quantity and fineness of fly ash, quantity of water, grading of fine aggregate, fine to total aggregate ratio. Sodium silicate solution with Na2O = 16.37 %, SiO2 = 34.35 % and H2O = 49.28 % and sodium hydroxide solution having 13 M concentration were maintained constant throughout the experiment. Water-to-geopolymer binder ratio of 0.35, alkaline solution-to-fly ash ratio of 0.35 and sodium silicate-to-sodium hydroxide ratio of 1.0 by mass were fixed on the basis of workability and cube compressive strength. Workability of geopolymer concrete was measured by flow table apparatus and cubes of 150 mm side were cast and tested for compressive strength after specified period of oven heating. The temperature of oven heating was maintained at 60 °C for 24 h duration and tested 7 days after heating. It is observed that the results of workability and compressive strength are well match with the required degree of workability and compressive strength. So, proposed method is used to design normal and standard geopolymer concrete.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of mix proportioning on fresh, hardened and durability properties of fly ash and fly ash-slag geopolymer mortar is discussed. But, the main focus of this paper is on the quality of the mortar.

109 citations

Journal ArticleDOI
TL;DR: In this article, the compressive strength of fly ash residual from thermal industries has been used in the production of FA-based geopolymer concrete (FGPC) to avoid time-consuming and costly experimental procedures, soft computing techniques, namely, random forest regression (RFR) and gene expression programming (GEP), are used in order to develop an empirical model for the prediction of compressive strengths.
Abstract: Fly ash (FA) is a residual from thermal industries that has been effectively utilized in the production of FA-based geopolymer concrete (FGPC). To avoid time-consuming and costly experimental procedures, soft computing techniques, namely, random forest regression (RFR) and gene expression programming (GEP), are used in this study to develop an empirical model for the prediction of compressive strength of FGPC. A widespread, reliable, and consistent database of compressive strength of FGPC is set up via a comprehensive literature review. The database consists of 298 compressive strength data points. The influential parameters that are considered as input variables for modelling are curing temperature , curing time , age of the specimen , the molarity of NaOH solution , percent SiO2 solids to water ratio in sodium silicate (Na2SiO3) solution, percent volume of total aggregate (), fine aggregate to the total aggregate ratio , sodium oxide (Na2O) to water ratio in Na2SiO3 solution, alkali or activator to the FA ratio , Na2SiO3 to NaOH ratio , percent plasticizer (), and extra water added as percent FA . RFR is an ensemble algorithm and gives outburst performance as compared to GEP. However, GEP proposed an empirical expression that can be used to estimate the compressive strength of FGPC. The accuracy and performance of both models are evaluated via statistical error checks, and external validation is considered. The proposed GEP equation is used for sensitivity analysis and parametric study and then compared with nonlinear and linear regression expressions.

97 citations

Journal ArticleDOI
TL;DR: In this article, the setting time and 7-day properties of geopolymer mortar were investigated considering several parameters such as curing temperature, sodium hydroxide solution molarity, alkaline solution to binder ratio and binder type.

87 citations

Journal ArticleDOI
TL;DR: In this article, a study was made to determine the strength characteristics of glass fibre-reinforced fly ash-based geopolymer concrete, which achieved a maximum compressive strength of 24.8MPa after 28-d.

83 citations

Journal ArticleDOI
TL;DR: In this paper, a sustainable domain and state of the art review of geopolymer composites made from various geopolymeric waste binders is presented, and the properties of composites are also discussed.

74 citations

References
More filters
Journal ArticleDOI
TL;DR: In the last few years, technological progress has been made in the development of new materials such as "geopolymers" and new techniques, such as ''sol-gel'' as mentioned in this paper, opening up new applications and procedures and transforming ideas that have been taken for granted in inorganic chemistry.
Abstract: Spectacular technological progress has been made in the last few years through thedevelopment of new materials such as «geopolymers», and new techniques, such as «sol-gel». New state-of-the-art materials designed with the help of geopolymerization reactions are opening up new applications and procedures and transforming ideas that have been taken for granted in inorganic chemistry. High temperature techniques arc no longer necessary to obtain materials which are ceramic-like in their structures and properties

3,178 citations

Journal ArticleDOI
TL;DR: In this article, a statistical study of the effect on the polymerization process of the molar ratio of the component oxides and the water content of the mixture showed the latter to be a critical parameter.

933 citations

Journal ArticleDOI
TL;DR: In this article, fly ash-based geopolymer concrete was developed to reduce greenhouse gas emissions, and the test results showed the effects of various parameters on the properties of the concrete.
Abstract: To reduce greenhouse gas emissions, efforts are needed to develop environmentally friendly construction materials. This paper presents the development of fly ash-based geopolymer concrete. In geopolymer concrete, a by-product material rich in silicon and aluminum, such as low-calcium (ASTM C 618 Class F) fly ash, is chemically activated by a high-alkaline solution to form a paste that binds the loose coarse and fine aggregates, and other unreacted materials in the mixture. The test results presented in this paper show the effects of various parameters on the properties of geopolymer concrete. The application of geopolymer concrete and future research needs are also identified.

797 citations

Journal Article
TL;DR: In this article, the authors discuss the increase use of large volumes of fly ash and other supplementary cementing materials in the construction industry and its role in reducing these emissions, since the manufacture of portland cement contributes significantly to carbon dioxide emissions.
Abstract: Environmental issues will play a leading role in the sustainable development of the cement and concrete industry in the 21st century. The World Earth Summits in Rio de Janeiro, Brazil in 1992, and Kyoto, Japan in 1997, have made it abundantly clear that unchecked increased emission of greenhouse gases to the atmosphere is no longer environmentally and socially acceptable for overall sustainable development. The primary greenhouse gas emissions discussed in the sessions of the above conferences are carbon dioxide emissions. Other greenhouse gases such as nitrous oxide and methane, are of serious concern, but the amount involved is relatively small compared with that of carbon dioxide. Consequently, developed countries are considering regulations and mandatory quotas on the emission of these gases, and the main thrust is to stabilize these emissions to the 1990 level by the year 2010. Since the manufacture of portland cement contributes significantly to carbon dioxide emissions, this article discusses the increase use of large volumes of fly ash and other supplementary cementing materials in the construction industry and its role in reducing these emissions.

226 citations