scispace - formally typeset
Book ChapterDOI

Mixed Reality-Based Dataset Generation for Learning-Based Scan-to-BIM

10 Jan 2021-pp 389-403

...read more


References
More filters
Proceedings Article

[...]

07 Jun 2017
TL;DR: PointNet++ as discussed by the authors applies PointNet recursively on a nested partitioning of the input point set to learn local features with increasing contextual scales, and proposes novel set learning layers to adaptively combine features from multiple scales.
Abstract: Few prior works study deep learning on point sets. PointNet is a pioneer in this direction. However, by design PointNet does not capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns and generalizability to complex scenes. In this work, we introduce a hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set. By exploiting metric space distances, our network is able to learn local features with increasing contextual scales. With further observation that point sets are usually sampled with varying densities, which results in greatly decreased performance for networks trained on uniform densities, we propose novel set learning layers to adaptively combine features from multiple scales. Experiments show that our network called PointNet++ is able to learn deep point set features efficiently and robustly. In particular, results significantly better than state-of-the-art have been obtained on challenging benchmarks of 3D point clouds.

3,295 citations

Proceedings ArticleDOI

[...]

21 Jul 2017
TL;DR: This work introduces ScanNet, an RGB-D video dataset containing 2.5M views in 1513 scenes annotated with 3D camera poses, surface reconstructions, and semantic segmentations, and shows that using this data helps achieve state-of-the-art performance on several 3D scene understanding tasks.
Abstract: A key requirement for leveraging supervised deep learning methods is the availability of large, labeled datasets. Unfortunately, in the context of RGB-D scene understanding, very little data is available – current datasets cover a small range of scene views and have limited semantic annotations. To address this issue, we introduce ScanNet, an RGB-D video dataset containing 2.5M views in 1513 scenes annotated with 3D camera poses, surface reconstructions, and semantic segmentations. To collect this data, we designed an easy-to-use and scalable RGB-D capture system that includes automated surface reconstruction and crowdsourced semantic annotation. We show that using this data helps achieve state-of-the-art performance on several 3D scene understanding tasks, including 3D object classification, semantic voxel labeling, and CAD model retrieval.

999 citations

Posted Content

[...]

TL;DR: The ScanNet dataset as discussed by the authors contains 2.5M RGB-D views in 1513 scenes annotated with 3D camera poses, surface reconstructions, and semantic segmentations.
Abstract: A key requirement for leveraging supervised deep learning methods is the availability of large, labeled datasets. Unfortunately, in the context of RGB-D scene understanding, very little data is available -- current datasets cover a small range of scene views and have limited semantic annotations. To address this issue, we introduce ScanNet, an RGB-D video dataset containing 2.5M views in 1513 scenes annotated with 3D camera poses, surface reconstructions, and semantic segmentations. To collect this data, we designed an easy-to-use and scalable RGB-D capture system that includes automated surface reconstruction and crowdsourced semantic annotation. We show that using this data helps achieve state-of-the-art performance on several 3D scene understanding tasks, including 3D object classification, semantic voxel labeling, and CAD model retrieval. The dataset is freely available at this http URL.

976 citations

Proceedings ArticleDOI

[...]

27 Jun 2016
TL;DR: This paper argues that identification of structural elements in indoor spaces is essentially a detection problem, rather than segmentation which is commonly used, and proposes a method for semantic parsing the 3D point cloud of an entire building using a hierarchical approach.
Abstract: In this paper, we propose a method for semantic parsing the 3D point cloud of an entire building using a hierarchical approach: first, the raw data is parsed into semantically meaningful spaces (e.g. rooms, etc) that are aligned into a canonical reference coordinate system. Second, the spaces are parsed into their structural and building elements (e.g. walls, columns, etc). Performing these with a strong notation of global 3D space is the backbone of our method. The alignment in the first step injects strong 3D priors from the canonical coordinate system into the second step for discovering elements. This allows diverse challenging scenarios as man-made indoor spaces often show recurrent geometric patterns while the appearance features can change drastically. We also argue that identification of structural elements in indoor spaces is essentially a detection problem, rather than segmentation which is commonly used. We evaluated our method on a new dataset of several buildings with a covered area of over 6, 000m2 and over 215 million points, demonstrating robust results readily useful for practical applications.

778 citations

Journal ArticleDOI

[...]

TL;DR: Recent developments from research efforts inautomated acquisition of as-built point-cloud models from unordered daily site photo collections and geo-registration of site images, and automated generation of four-dimensiona models are reported.
Abstract: The significant advancement in digital imaging and widespread popularity of digital cameras for capturing a comprehensive visual record of construction performance in the architecture, engineering, construction, and facility management (AEC/FM) industries have triggered an extensive growth in the rate of site photography, allowing hundreds of images to be stored for a project on a daily basis. Meanwhile, collaborative AEC technologies centering around building information models (BIMs) are becoming widely applied to support various architectural, structural, and preconstruction decision-making tasks. These models, if integrated with the as-built perspective of a construction, have great potential to extensively add value during the construction phase of a project. This paper reports recent developments from research efforts in (1) automated acquisition of as-built point-cloud models from unordered daily site photo collections and geo-registration of site images, (2) automated generation of four-dimensiona...

146 citations