scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mixing Copper Nanoparticles and ZnO Nanocrystals: A Route towards Understanding the Hydrogenation of CO2 to Methanol?

26 Apr 2011-Angewandte Chemie (WILEY‐VCH Verlag)-Vol. 50, Iss: 18, pp 4053-4054
About: This article is published in Angewandte Chemie.The article was published on 2011-04-26. It has received 55 citations till now. The article focuses on the topics: Green chemistry & Heterogeneous catalysis.
Citations
More filters
Journal ArticleDOI
TL;DR: This critical review provides a comprehensive view of the significant advances in heterogeneous catalysis for methanol synthesis through direct hydrogenation of CO2 through noble metal-based catalysts, bimetallic catalysts including alloys and intermetallic compounds, as well as hybrid oxides and other novel catalytic systems.
Abstract: The ever-increasing amount of anthropogenic carbon dioxide (CO2) emissions has resulted in great environmental impacts. The selective hydrogenation of CO2 to methanol, the first target in the liquid sunshine vision, not only effectively mitigates the CO2 emissions, but also produces value-added chemicals and fuels. This critical review provides a comprehensive view of the significant advances in heterogeneous catalysis for methanol synthesis through direct hydrogenation of CO2. The challenges in thermodynamics are addressed first. Then the progress in conventional Cu-based catalysts is discussed in detail, with an emphasis on the structural, chemical, and electronic promotions of supports and promoters, the preparation methods and precursors of Cu-based catalysts, as well as the proposed models for active sites. We also provide an overview of the progress in noble metal-based catalysts, bimetallic catalysts including alloys and intermetallic compounds, as well as hybrid oxides and other novel catalytic systems. The developments in mechanistic aspects, reaction conditions and optimization, as well as reactor designs and innovations are also included. The advances in industrial applications for methanol synthesis are further highlighted. Finally, a summary and outlook are provided.

458 citations

Journal ArticleDOI
TL;DR: Preassembled bpy and Zr6(μ3-O)4( μ3-OH)4 sites in UiO-bpy metal-organic frameworks (MOFs) are reported to be used to anchor ultrasmall Cu/ZnOx nanoparticles, thus preventing the agglomeration of Cu NPs and phase separation between Cu and ZnOx in MOF-cavity-confined Cu/ Zn Ox nanoparticles.
Abstract: The interfaces of Cu/ZnO and Cu/ZrO2 play vital roles in the hydrogenation of CO2 to methanol by these composite catalysts. Surface structural reorganization and particle growth during catalysis deleteriously reduce these active interfaces, diminishing both catalytic activities and MeOH selectivities. Here we report the use of preassembled bpy and Zr6(μ3-O)4(μ3-OH)4 sites in UiO-bpy metal–organic frameworks (MOFs) to anchor ultrasmall Cu/ZnOx nanoparticles, thus preventing the agglomeration of Cu NPs and phase separation between Cu and ZnOx in MOF-cavity-confined Cu/ZnOx nanoparticles. The resultant Cu/ZnOx@MOF catalysts show very high activity with a space–time yield of up to 2.59 gMeOH kgCu–1 h–1, 100% selectivity for CO2 hydrogenation to methanol, and high stability over 100 h. These new types of strong metal–support interactions between metallic nanoparticles and organic chelates/metal-oxo clusters offer new opportunities in fine-tuning catalytic activities and selectivities of metal nanoparticles@MOFs.

406 citations

Journal ArticleDOI
TL;DR: In this article, a novel, in situ simultaneous reduction-hydrolysis technique (SRH) is developed for fabrication of TiO2--graphene hybrid nanosheets in a binary ethylenediamine (En)/H2O solvent.
Abstract: A novel, in situ simultaneous reduction-hydrolysis technique (SRH) is developed for fabrication of TiO2--graphene hybrid nanosheets in a binary ethylenediamine (En)/H2O solvent. The SRH technique is based on the mechanism of the simultaneous reduction of graphene oxide (GO) into graphene by En and the formation of TiO2 nanoparticles through hydrolysis of titanium (IV) (ammonium lactato) dihydroxybis, subsequently in situ loading onto graphene through chemical bonds (Ti–O–C bond) to form 2D sandwich-like nanostructure. The dispersion of TiO2 hinders the collapse and restacking of exfoliated sheets of graphene during reduction process. In contrast with prevenient G-TiO2 nanocomposites, abundant Ti3+ is detected on the surface of TiO2 of the present hybrid, caused by reducing agent En. The Ti3+ sites on the surface can serve as sites for trapping photogenerated electrons to prevent recombination of electron–hole pairs. The high photocatalytic activity of G-TiO2 hybrid is confirmed by photocatalytic conversion of CO2 to valuable hydrocarbons (CH4 and C2H6) in the presence of water vapor. The synergistic effect of the surface-Ti3+ sites and graphene favors the generation of C2H6, and the yield of the C2H6 increases with the content of incorporated graphene. The work may open a new doorway for new significant application of graphene for selectively catalytic C–C coupling reaction

343 citations

Journal ArticleDOI
TL;DR: The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO2.
Abstract: The synergistic interaction among different components in complex catalysts is one of the crucial factors in determining catalytic performance. Here we report the interactions among the three components in controlling the catalytic performance of Cu–ZnO–ZrO2 (CZZ) catalyst for CO2 hydrogenation to methanol. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements under the activity test pressure (3 MPa) reveal that the CO2 hydrogenation to methanol on the CZZ catalysts follows the formate pathway. Density functional theory (DFT) calculations agree with the in situ DRIFTS measurements, showing that the ZnO–ZrO2 interfaces are the active sites for CO2 adsorption and conversion, while the presence of metallic Cu is also necessary to facilitate H2 dissociation and to provide hydrogen resource. The combined experiment and DFT results reveal that tuning the interaction between ZnO and ZrO2 can be considered as another important factor for designing high performance catalysts for methanol generation from CO2. Despite great efforts, the reaction mechanism of CO2 hydrogenation to methanol and the nature of the active sites on Cu–ZnO–ZrO2 (CZZ) catalysts are still under debate. Herein, the authors report the interactions among the three components in controlling the catalytic performance of CZZ catalyst for CO2 hydrogenation to methanol.

234 citations

Journal ArticleDOI
TL;DR: In this article, a 1 wt% Cu/β-Mo2C catalysts were optimized for the reverse water gas shift (RWGS) reaction, which showed that the strong interaction between Cu and Mo2C effectively promotes the dispersion of supported copper and prevents the aggregation of Cu particles, which accounts for the extraordinary activity and stability.
Abstract: Cu-oxide catalysts have a tendency to deactivate dramatically in reverse water gas shift (RWGS) reaction, because of the aggregation of supported copper particles at high temperatures. Herein, β-Mo2C, which is a typical type of transition-metal carbide, has been demonstrated to be capable of dispersing and stabilizing copper particles. Cu/β-Mo2C catalysts exhibit good catalytic activity and stability for the RWGS reaction. Under relatively high weight hourly space velocity (WHSV = 300 000 mL/g/h), the optimized 1 wt % Cu/β-Mo2C exhibits superior activity over traditional oxide-supported Pt- and Cu-based catalysts. The activity was well-maintained in a 40 h stability test, and the catalyst shows stable reactivity in a six-cycle start-up cool-down experiment. Detailed structure characterizations demonstrate that the strong interaction between Cu and β-Mo2C effectively promotes the dispersion of supported copper and prevents the aggregation of Cu particles, which accounts for the extraordinary activity and s...

233 citations

References
More filters
Journal ArticleDOI
11 Sep 1998-Science
TL;DR: Results suggest that supported clusters, in general, may have unusual catalytic properties as one dimension of the cluster becomes smaller than three atomic spacings.
Abstract: Gold clusters ranging in diameter from 1 to 6 nanometers have been prepared on single crystalline surfaces of titania in ultrahigh vacuum to investigate the unusual size dependence of the low-temperature catalytic oxidation of carbon monoxide. Scanning tunneling microscopy/spectroscopy (STM/STS) and elevated pressure reaction kinetics measurements show that the structure sensitivity of this reaction on gold clusters supported on titania is related to a quantum size effect with respect to the thickness of the gold islands; islands with two layers of gold are most effective for catalyzing the oxidation of carbon monoxide. These results suggest that supported clusters, in general, may have unusual catalytic properties as one dimension of the cluster becomes smaller than three atomic spacings.

3,912 citations

Journal ArticleDOI
TL;DR: Benzene hydrogenation was investigated in the presence of a surface monolayer consisting of Pt nanoparticles of different shapes (cubic and cuboctahedral) and tetradecyltrimethylammonium bromide and the catalytic selectivity was found to be strongly affected by the nanoparticle shape.
Abstract: Benzene hydrogenation was investigated in the presence of a surface monolayer consisting of Pt nanoparticles of different shapes (cubic and cuboctahedral) and tetradecyltrimethylammonium bromide (TTAB). Infrared spectroscopy indicated that TTAB binds to the Pt surface through a weak C-H...Pt bond of the alkyl chain. The catalytic selectivity was found to be strongly affected by the nanoparticle shape. Both cyclohexane and cyclohexene product molecules were formed on cuboctahedral nanoparticles, whereas only cyclohexane was produced on cubic nanoparticles. These results are the same as the product selectivities obtained on Pt(111) and Pt(100) single crystals in earlier studies. The apparent activation energy for cyclohexane production on cubic nanoparticles is 10.9 +/- 0.4 kcal/mol, while for cuboctahedral nanoparticles, the apparent activation energies for cyclohexane and cyclohexene production are 8.3 +/- 0.2 and 12.2 +/- 0.4 kcal/mol, respectively. These activation energies are lower, and corresponding turnover rates are three times higher than those obtained with single-crystal Pt surfaces.

800 citations

Journal ArticleDOI
TL;DR: In this article, the structure and catalytic activity of Cu/ZnO methanol synthesis catalysts have been investigated by a further developed in situ method, which combines X-ray diffraction (XRD), Xray absorption fine structure spectroscopy (XAFS), and on-line catalytic measurements by mass spectrometry.

508 citations

Journal ArticleDOI
01 Aug 1988-Nature
TL;DR: In this paper, the minute Schottky junctions at the interface between metals and oxides in the catalysts affect the surface chemistry of the oxides, in a way that correlates with catalytic behavior.
Abstract: The mechanism of catalysis of methanol synthesis is controversial. Here it is proposed that the minute Schottky junctions at the interface between metals and oxides in the catalysts affect the surface chemistry of the oxides in a way that correlates with catalytic behaviour. This theory can predict the existence and properties of new catalysts.

370 citations