scispace - formally typeset
Search or ask a question
Book ChapterDOI

Mobile Patient Surveillance

01 Jan 2018-pp 58-84
About: The article was published on 2018-01-01. It has received None citations till now.
References
More filters
Journal ArticleDOI
03 May 2016-BMJ
TL;DR: Medical error is not included on death certificates or in rankings of cause of death, but its contribution to mortality and call for better reporting are assessed.
Abstract: Medical error is not included on death certificates or in rankings of cause of death. Martin Makary and Michael Daniel assess its contribution to mortality and call for better reporting

2,343 citations

Journal ArticleDOI
TL;DR: The epidemic of patient harm in hospitals must be taken more seriously if it is to be curtailed and fully engaging patients and their advocates during hospital care, systematically seeking the patients’ voice in identifying harms, transparent accountability for harm, and intentional correction of root causes of harm will be necessary.
Abstract: ObjectivesBased on 1984 data developed from reviews of medical records of patients treated in New York hospitals, the Institute of Medicine estimated that up to 98,000 Americans die each year from medical errors. The basis of this estimate is nearly 3 decades old; herein, an updated estimate is deve

1,245 citations

Journal ArticleDOI
TL;DR: An overview of health and healthcare smartphone apps (applications) on the market today, including emerging trends and market uptake, and the development of a smartphone app within eCAALYX, an EU-funded project for older people with multiple chronic conditions is described.
Abstract: The latest generation of smartphones are increasingly viewed as handheld computers rather than as phones, due to their powerful on-board computing capability, capacious memories, large screens and open operating systems that encourage application development. This paper provides a brief state-of-the-art overview of health and healthcare smartphone apps (applications) on the market today, including emerging trends and market uptake. Platforms available today include Android, Apple iOS, RIM BlackBerry, Symbian, and Windows (Windows Mobile 6.x and the emerging Windows Phone 7 platform). The paper covers apps targeting both laypersons/patients and healthcare professionals in various scenarios, e.g., health, fitness and lifestyle education and management apps; ambient assisted living apps; continuing professional education tools; and apps for public health surveillance. Among the surveyed apps are those assisting in chronic disease management, whether as standalone apps or part of a BAN (Body Area Network) and remote server configuration. We describe in detail the development of a smartphone app within eCAALYX (Enhanced Complete Ambient Assisted Living Experiment, 2009-2012), an EU-funded project for older people with multiple chronic conditions. The eCAALYX Android smartphone app receives input from a BAN (a patient-wearable smart garment with wireless health sensors) and the GPS (Global Positioning System) location sensor in the smartphone, and communicates over the Internet with a remote server accessible by healthcare professionals who are in charge of the remote monitoring and management of the older patient with multiple chronic conditions. Finally, we briefly discuss barriers to adoption of health and healthcare smartphone apps (e.g., cost, network bandwidth and battery power efficiency, usability, privacy issues, etc.), as well as some workarounds to mitigate those barriers.

1,043 citations

Journal ArticleDOI
TL;DR: Smartphone-based healthcare technologies as discussed in academic literature according to their functionalities are classified, and the disease diagnosis, drug reference, and medical calculator applications were reported as most useful by healthcare professionals and medical or nursing students.
Abstract: Advanced mobile communications and portable computation are now combined in handheld devices called “smartphones”, which are also capable of running third-party software. The number of smartphone users is growing rapidly, including among healthcare professionals. The purpose of this study was to classify smartphone-based healthcare technologies as discussed in academic literature according to their functionalities, and summarize articles in each category. In April 2011, MEDLINE was searched to identify articles that discussed the design, development, evaluation, or use of smartphone-based software for healthcare professionals, medical or nursing students, or patients. A total of 55 articles discussing 83 applications were selected for this study from 2,894 articles initially obtained from the MEDLINE searches. A total of 83 applications were documented: 57 applications for healthcare professionals focusing on disease diagnosis (21), drug reference (6), medical calculators (8), literature search (6), clinical communication (3), Hospital Information System (HIS) client applications (4), medical training (2) and general healthcare applications (7); 11 applications for medical or nursing students focusing on medical education; and 15 applications for patients focusing on disease management with chronic illness (6), ENT-related (4), fall-related (3), and two other conditions (2). The disease diagnosis, drug reference, and medical calculator applications were reported as most useful by healthcare professionals and medical or nursing students. Many medical applications for smartphones have been developed and widely used by health professionals and patients. The use of smartphones is getting more attention in healthcare day by day. Medical applications make smartphones useful tools in the practice of evidence-based medicine at the point of care, in addition to their use in mobile clinical communication. Also, smartphones can play a very important role in patient education, disease self-management, and remote monitoring of patients.

1,007 citations

Journal ArticleDOI
TL;DR: One major application in pervasive healthcare, termed comprehensive health monitoring is presented in significant details using wireless networking solutions of wireless LANs, ad hoc wireless networks, and, cellular/GSM/3G infrastructure-oriented networks.
Abstract: With an increasingly mobile society and the worldwide deployment of mobile and wireless networks, the wireless infrastructure can support many current and emerging healthcare applications. This could fulfill the vision of "Pervasive Healthcare" or healthcare to anyone, anytime, and anywhere by removing locational, time and other restraints while increasing both the coverage and the quality. In this paper, we present applications and requirements of pervasive healthcare, wireless networking solutions and several important research problems. The pervasive healthcare applications include pervasive health monitoring, intelligent emergency management system, pervasive health-care data access, and ubiquitous mobile telemedicine. One major application in pervasive healthcare, termed comprehensive health monitoring is presented in significant details using wireless networking solutions of wireless LANs, ad hoc wireless networks, and, cellular/GSM/3G infrastructure-oriented networks. Many interesting challenges of comprehensive wireless health monitoring, including context-awareness, reliability, and, autonomous and adaptable operation are also presented along with several high-level solutions. Several interesting research problems have been identified and presented for future research.

704 citations