scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mobility- and Energy-Aware Cooperative Edge Offloading for Dependent Computation Tasks

04 Sep 2021-IEEE Network (Multidisciplinary Digital Publishing Institute)-Vol. 1, Iss: 2, pp 191-214
TL;DR: The numerical evaluations indicate that the EETO approach consistently reduces the battery energy consumption across a wide range of task complexities and task completion deadlines and can thus extend the battery lifetimes of mobile devices operating with sliced edge computing resources.
Abstract: Cooperative edge offloading to nearby end devices via Device-to-Device (D2D) links in edge networks with sliced computing resources has mainly been studied for end devices (helper nodes) that are stationary (or follow predetermined mobility paths) and for independent computation tasks. However, end devices are often mobile, and a given application request commonly requires a set of dependent computation tasks. We formulate a novel model for the cooperative edge offloading of dependent computation tasks to mobile helper nodes. We model the task dependencies with a general task dependency graph. Our model employs the state-of-the-art deep-learning-based PECNet mobility model and offloads a task only when the sojourn time in the coverage area of a helper node or Multi-access Edge Computing (MEC) server is sufficiently long. We formulate the minimization problem for the consumed battery energy for task execution, task data transmission, and waiting for offloaded task results on end devices. We convert the resulting non-convex mixed integer nonlinear programming problem into an equivalent quadratically constrained quadratic programming (QCQP) problem, which we solve via a novel Energy-Efficient Task Offloading (EETO) algorithm. The numerical evaluations indicate that the EETO approach consistently reduces the battery energy consumption across a wide range of task complexities and task completion deadlines and can thus extend the battery lifetimes of mobile devices operating with sliced edge computing resources.
Citations
More filters
Journal Article
TL;DR: In this paper, the authors explore the limits of predictability in human dynamics by studying the mobility patterns of anonymized mobile phone users and find that 93% potential predictability for user mobility across the whole user base.
Abstract: A range of applications, from predicting the spread of human and electronic viruses to city planning and resource management in mobile communications, depend on our ability to foresee the whereabouts and mobility of individuals, raising a fundamental question: To what degree is human behavior predictable? Here we explore the limits of predictability in human dynamics by studying the mobility patterns of anonymized mobile phone users. By measuring the entropy of each individual's trajectory, we find a 93% potential predictability in user mobility across the whole user base. Despite the significant differences in the travel patterns, we find a remarkable lack of variability in predictability, which is largely independent of the distance users cover on a regular basis.

118 citations

Journal ArticleDOI
TL;DR: This paper investigates fifth generation and beyond (5GB) networks, the basics of D2D communication, applications, and classification, and presents the integration of D 2D communication with other prominent technologies and demonstrates the importance of integration with possible solutions in improving network performance.
Abstract: Device-to-device (D2D) communication is one of the most promising technologies in wireless cellular networks that can be employed to improve spectral and energy efficiency, increase data rates, and reduce links latency. This paper investigates fifth generation and beyond (5GB) networks, the basics of D2D communication, applications, and classification. Herein, D2D in in-band (IBD) and out-band (OBD) modes are discussed. This paper also presents the integration of D2D communication with other prominent technologies and demonstrates the importance of integration with possible solutions in improving network performance. We further investigate the challenges of D2D communication, opportunities, and future research directions of D2D in 5GB networks. In addition, D2D communication in 6G network challenges and open research areas are introduced.

14 citations

Journal ArticleDOI
TL;DR: The novelty of this paper is in how the price influences offloading demand and decides how to reduce network costs while maximizing UAV operator revenue, but not the offloading benefits with the mobility of vehicles and UAV.
Abstract: — In the fifth-generation (5G) cellular network, the Mobile Network Operator (MNO), and the Mobile Edge Computing (MEC) platform will play an important role in providing services to an increasing number of vehicles. Due to vehicle mobility and the rise of computation-intensive and delay-sensitive vehicular applications, it is challenging to achieve the rigorous latency and reliability requirements of vehicular communication. The MNO, with the MEC server mounted on an unmanned aerial vehicle (UAV), should make a profit by providing its computing services and capabilities to moving vehicles. This paper proposes the use of dynamic pricing for computation offloading in UAV-MEC for vehicles. The novelty of this paper is in how the price influences offloading demand and decides how to reduce network costs (delay and energy) while maximizing UAV operator revenue, but not the offloading benefits with the mobility of vehicles and UAV. The optimization problem is formulated as a Markov Decision Process (MDP). The MDP can be solved by the Deep Reinforcement Learning (DRL) algorithm, especially the Deep Deterministic Policy Gradient (DDPG). Extensive simulation results demonstrate that the proposed pricing model outperforms greedy by 26% and random by 51% in terms of delay. In terms of system utility, the proposed pricing model outperforms greedy only by 17%. In terms of server congestion, the proposed pricing model outperforms random by 19% and is almost the same as greedy.

5 citations

Journal ArticleDOI
31 Mar 2022-Sensors
TL;DR: The contribution of this research is to choose optimum parameters in optimization function while considering handover, delay, and energy costs, and the proposed methods outperform the overall system performance.
Abstract: Multi-access edge computing (MEC) is a key technology in the fifth generation (5G) of mobile networks. MEC optimizes communication and computation resources by hosting the application process close to the user equipment (UE) in network edges. The key characteristics of MEC are its ultra-low latency response and real-time applications in emerging 5G networks. However, one of the main challenges in MEC-enabled 5G networks is that MEC servers are distributed within the ultra-dense network. Hence, it is an issue to manage user mobility within ultra-dense MEC coverage, which causes frequent handover. In this study, our purposed algorithms include the handover cost while having optimum offloading decisions. The contribution of this research is to choose optimum parameters in optimization function while considering handover, delay, and energy costs. In this study, it assumed that the upcoming future tasks are unknown and online task offloading (TO) decisions are considered. Generally, two scenarios are considered. In the first one, called the online UE-BS algorithm, the users have both user-side and base station-side (BS) information. Because the BS information is available, it is possible to calculate the optimum BS for offloading and there would be no handover. However, in the second one, called the BS-learning algorithm, the users only have user-side information. This means the users need to learn time and energy costs throughout the observation and select optimum BS based on it. In the results section, we compare our proposed algorithm with recently published literature. Additionally, to evaluate the performance it is compared with the optimum offline solution and two baseline scenarios. The simulation results indicate that the proposed methods outperform the overall system performance.

4 citations

Proceedings ArticleDOI
01 Jul 2022
TL;DR: A two-layer distributed online task scheduling framework to maximize the task acceptance ratio (TAR) under various QoS requirements when facing unbalanced task distribution is designed and the experimental results show that the method outperforms the state-of-the-art algorithms.
Abstract: In recent years, data-driven intelligent transportation systems (ITS) have developed rapidly and brought various AI-assisted applications to improve traffic efficiency. However, these applications are constrained by their inherent high computing demand and the limitation of vehicular computing power. Vehicular edge computing (VEC) has shown great potential to support these applications by providing computing and storage capacity in close proximity. For facing the heterogeneous nature of in-vehicle applications and the highly dynamic network topology in the Internet-of-Vehicle (IoV) environment, how to achieve efficient scheduling of computational tasks is a critical problem. Accordingly, we design a two-layer distributed online task scheduling framework to maximize the task acceptance ratio (TAR) under various QoS requirements when facing unbalanced task distribution. Briefly, we implement the computation offloading and transmission scheduling policies for the vehicles to optimize the onboard computational task scheduling. Meanwhile, in the edge computing layer, a new distributed task dispatching policy is developed to maximize the utilization of system computing power and minimize the data transmission delay caused by vehicle motion. Through single-vehicle and multi-vehicle simulations, we evaluate the performance of our framework, and the experimental results show that our method outperforms the state-of-the-art algorithms. Moreover, we conduct ablation experiments to validate the effectiveness of our core algorithms.

4 citations

References
More filters
Book ChapterDOI
TL;DR: The work of Dantzig, Fulkerson, Hoffman, Edmonds, Lawler and other pioneers on network flows, matching and matroids acquainted me with the elegant and efficient algorithms that were sometimes possible.
Abstract: Throughout the 1960s I worked on combinatorial optimization problems including logic circuit design with Paul Roth and assembly line balancing and the traveling salesman problem with Mike Held. These experiences made me aware that seemingly simple discrete optimization problems could hold the seeds of combinatorial explosions. The work of Dantzig, Fulkerson, Hoffman, Edmonds, Lawler and other pioneers on network flows, matching and matroids acquainted me with the elegant and efficient algorithms that were sometimes possible. Jack Edmonds’ papers and a few key discussions with him drew my attention to the crucial distinction between polynomial-time and superpolynomial-time solvability. I was also influenced by Jack’s emphasis on min-max theorems as a tool for fast verification of optimal solutions, which foreshadowed Steve Cook’s definition of the complexity class NP. Another influence was George Dantzig’s suggestion that integer programming could serve as a universal format for combinatorial optimization problems.

8,644 citations

Journal ArticleDOI
TL;DR: An overview of the Internet of Things with emphasis on enabling technologies, protocols, and application issues, and some of the key IoT challenges presented in the recent literature are provided and a summary of related research work is provided.
Abstract: This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols, and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies, and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile, and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.

6,131 citations

Journal ArticleDOI
19 Feb 2010-Science
TL;DR: Analysis of the trajectories of people carrying cell phones reveals that human mobility patterns are highly predictable, and a remarkable lack of variability in predictability is found, which is largely independent of the distance users cover on a regular basis.
Abstract: A range of applications, from predicting the spread of human and electronic viruses to city planning and resource management in mobile communications, depend on our ability to foresee the whereabouts and mobility of individuals, raising a fundamental question: To what degree is human behavior predictable? Here we explore the limits of predictability in human dynamics by studying the mobility patterns of anonymized mobile phone users. By measuring the entropy of each individual's trajectory, we find a 93% potential predictability in user mobility across the whole user base. Despite the significant differences in the travel patterns, we find a remarkable lack of variability in predictability, which is largely independent of the distance users cover on a regular basis.

3,040 citations

Journal ArticleDOI
TL;DR: The Tactile Internet will become a driver for economic growth and innovation and will help bring a new level of sophistication to societies.
Abstract: Wireless communications today enables us to connect devices and people for an unprecedented exchange of multimedia and data content. The data rates of wireless communications continue to increase, mainly driven by innovation in electronics. Once the latency of communication systems becomes low enough to enable a round-trip delay from terminals through the network back to terminals of approximately 1 ms, an overlooked breakthrough?human tactile to visual feedback control?will change how humans communicate around the world. Using these controls, wireless communications can be the platform for enabling the control and direction of real and virtual objects in many situations of our life. Almost no area of the economy will be left untouched, as this new technology will change health care, mobility, education, manufacturing, smart grids, and much more. The Tactile Internet will become a driver for economic growth and innovation and will help bring a new level of sophistication to societies.

839 citations

Journal ArticleDOI
TL;DR: In this article, the alternating directions method of multipliers is used to solve the homogeneous self-dual embedding, an equivalent feasibility problem involving finding a nonzero point in the intersection of a subspace and a cone.
Abstract: We introduce a first-order method for solving very large convex cone programs. The method uses an operator splitting method, the alternating directions method of multipliers, to solve the homogeneous self-dual embedding, an equivalent feasibility problem involving finding a nonzero point in the intersection of a subspace and a cone. This approach has several favorable properties. Compared to interior-point methods, first-order methods scale to very large problems, at the cost of requiring more time to reach very high accuracy. Compared to other first-order methods for cone programs, our approach finds both primal and dual solutions when available or a certificate of infeasibility or unboundedness otherwise, is parameter free, and the per-iteration cost of the method is the same as applying a splitting method to the primal or dual alone. We discuss efficient implementation of the method in detail, including direct and indirect methods for computing projection onto the subspace, scaling the original problem data, and stopping criteria. We describe an open-source implementation, which handles the usual (symmetric) nonnegative, second-order, and semidefinite cones as well as the (non-self-dual) exponential and power cones and their duals. We report numerical results that show speedups over interior-point cone solvers for large problems, and scaling to very large general cone programs.

597 citations