scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber

15 Jun 2008-Optics Letters (Optical Society of America)-Vol. 33, Iss: 12, pp 1336-1338
TL;DR: In this article, a ring-cavity thulium fiber laser with a single-wall carbon nanotube absorber was used in transmission, achieving an average output power of 3.4 mW.
Abstract: We report a ring-cavity thulium fiber laser mode locked with a single-wall carbon nanotube absorber used in transmission. A carboxymethyl cellulose polymer film with incorporated carbon nanotubes synthesized by the arc discharge method has an absorption coinciding with in the amplification bandwidth of a Tm-doped fiber. This laser is pumped by an erbium fiber laser at 1.57 μm wavelength and produces a 37 MHz train of mode-locked 1.32 ps pulses at 1.93 μm wavelength with an average output power of 3.4 mW.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discuss the emerging field of mid-infrared frequency comb generation, including technologies based on novel laser gain media, nonlinear frequency conversion and micro-resonators.
Abstract: This Review discusses the emerging field of mid-infrared frequency comb generation, including technologies based on novel laser gain media, nonlinear frequency conversion and microresonators, as well as the applications of these combs in precision spectroscopy and direct frequency comb spectroscopy. Laser frequency combs are coherent light sources that emit a broad spectrum of discrete, evenly spaced narrow lines whose absolute frequency can be measured to within the accuracy of an atomic clock. Their development in the near-infrared and visible domains has revolutionized frequency metrology while also providing numerous unexpected opportunities in other fields such as astronomy and attosecond science. Researchers are now exploring how to extend frequency comb techniques to the mid-infrared spectral region. Versatile mid-infrared frequency comb generators based on novel laser gain media, nonlinear frequency conversion or microresonators promise to significantly expand the applications of frequency combs. In particular, novel approaches to molecular spectroscopy in the 'fingerprint region', with dramatically improved precision, sensitivity, recording time and/or spectral bandwidth may lead to new discoveries in the various fields relevant to molecular science.

1,161 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes the different rare-earth cations and host materials used in mid-infrared fiber laser technology, and discusses the future applications and challenges for the field.
Abstract: Fibre lasers in the mid-infrared regime are useful for a diverse range of fields, including chemical and biomedical sensing, military applications and materials processing. This Review summarizes the different rare-earth cations and host materials used in mid-infrared fibre laser technology, and discusses the future applications and challenges for the field.

974 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review various aspects of fabrication, characterization, device implementation and operation of carbon nanotube-polymer composites to be used in photonic applications.
Abstract: Polymer composites are one of the most attractive near-term means to exploit the unique properties of carbon nanotubes and graphene. This is particularly true for composites aimed at electronics and photonics, where a number of promising applications have already been demonstrated. One such example is nanotube-based saturable absorbers. These can be used as all-optical switches, optical amplifier noise suppressors, or mode-lockers to generate ultrashort laser pulses. Here, we review various aspects of fabrication, characterization, device implementation and operation of nanotube-polymer composites to be used in photonic applications. We also summarize recent results on graphene-based saturable absorbers for ultrafast lasers.

959 citations

Journal ArticleDOI
TL;DR: In this article, the topological insulator (TI) Bi2Te3 is shown to be a very high modulation-depth (up to 95%) saturable absorber.
Abstract: Under strong laser radiation, a Dirac material, the topological insulator (TI) Bi2Te3, exhibits an optical transmittance increase as a result of saturable absorption. Based on an open-aperture Z-scan measurement at 1550 nm, we clearly show that the TI, Bi2Te3 under our investigation, is indeed a very-high-modulation-depth (up to 95%) saturable absorber. Furthermore, a TI based saturable absorber device was fabricated and used as a passive mode locker for ultrafast pulse formation at the telecommunication band. This contribution unambiguously shows that apart from its fantastic electronic property, a TI (Bi2Te3) may also possess attractive optoelectronic property for ultrafast photonics.

556 citations

Journal ArticleDOI
TL;DR: In this article, a wideband-tunable Q-switched fiber laser exploiting a graphene saturable absorber was demonstrated, with 2μs pulses, tunable between 1522 and 1555 nm.
Abstract: We demonstrate a wideband-tunable Q-switched fiber laser exploiting a graphene saturable absorber. We get ∼2 μs pulses, tunable between 1522 and 1555 nm with up to ∼40 nJ energy. This is a simple and low-cost light source for metrology, environmental sensing, and biomedical diagnostics.

436 citations

References
More filters
Journal ArticleDOI
TL;DR: High-quality single-walled carbon nanotubes were directly synthesized on quartz substrates and fiber ends and successfully applied the SWNTs to mode lock a fiber laser producing subpicosecond pulses at a 50-MHz repetition rate.
Abstract: We present novel carbon-nanotube-based saturable absorbers. Using the low-temperature alcohol catalytic chemical-vapor deposition method, high-quality single-walled carbon nanotubes (SWNTs) were directly synthesized on quartz substrates and fiber ends. We successfully applied the SWNTs to mode lock a fiber laser producing subpicosecond pulses at a 50-MHz repetition rate.

419 citations

Journal ArticleDOI
TL;DR: In this article, an additive-pulse mode-locked (APM) thulium-doped fiber ring laser was presented, which produces 350-500 fs pulses tunable from 1798 to 1902 nm.
Abstract: We report an additive‐pulse mode‐locked (APM) thulium‐doped fiber ring laser producing 350–500 fs pulses tunable from 1798 to 1902 nm. The laser operates in the soliton regime, where periodic perturbations cause predictable sidebands and modulation in the optical spectrum.

245 citations

Journal ArticleDOI
TL;DR: A novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber that ensures the preservation of the original morphology of the individual CNTs.
Abstract: We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

239 citations

Journal ArticleDOI
R. C. Sharp1, D.E. Spock1, N. Pan1, J. Elliot1
02 Jun 1996
TL;DR: A self-starting passively mode-locked thulium-doped silica fiber laser capable of 190-fs pulses is reported, achieved with a band-gap-engineered saturable absorber fabricated monolithically along with the output coupler of the laser by MOCVD.
Abstract: Summary form only given. We report a self-starting passively mode-locked thulium-doped silica fiber laser capable of 190-fs pulses. Mode-locking of the fiber laser was achieved with a band-gap-engineered saturable absorber fabricated monolithically along with the output coupler of the laser by MOCVD. Stable, single-pulse-in-the-cavity mode-locking was observed for a 2-m-long fiber laser utilizing a nanosecond response strained InGaAs detector.

203 citations