scispace - formally typeset
Open AccessBook

Model-Based Control of a Robot Manipulator

Reads0
Chats0
TLDR
Model-based control of a robot manipulator has been studied in this paper, where the authors present the first integrated treatment of many of the most important recent developments in using detailed dynamic models of robots to improve their control.
Abstract
Model-Based Control of a Robot Manipulator presents the first integrated treatment of many of the most important recent developments in using detailed dynamic models of robots to improve their control. The authors' work on automatic identification of kinematic and dynamic parameters, feedforward position control, stability in force control, and trajectory learning has significant implications for improving performance in future robot systems. All of the main ideas discussed in this book have been validated by experiments on a direct-drive robot arm.The book addresses the issues of building accurate robot models and of applying them for high performance control. It first describes how three sets of models - the kinematic model of the links and the inertial models of the links and of rigid-body loads - can be obtained automatically using experimental data. These models are then incorporated into position control, single trajectory learning, and force control. The MIT Serial Link Direct Drive Arm, on which these models were developed and applied to control, is one of the few manipulators currently suitable for testing such concepts.Contents: Introduction. Direct Drive Arms. Kinematic Calibration. Estimation of Load Inertial Parameters. Estimation of Link Inertial Parameters. Feedforward and Computed Torque Control. Model-Based Robot Learning. Dynamic Stability Issues in Force Control. Kinematic Stability Issues in Force Control. Conclusion.Chae An is Research Staff Member, IBM T.J. Watson Research Center, Christopher Atkeson is an Assistant Professor and John Hollerbach is an Associate Professor in the MIT Department of Brain and Cognitive Sciences and the MIT Artificial Intelligence Laboratory. Model-Based Control of a Robot Manipulator is included in the Artificial Intelligence Series edited by Patrick Winston and Michael Brady.

read more

Citations
More filters
Journal ArticleDOI

Reinforcement learning in robotics: A survey

TL;DR: This article attempts to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots by highlighting both key challenges in robot reinforcement learning as well as notable successes.
Proceedings ArticleDOI

Movement imitation with nonlinear dynamical systems in humanoid robots

TL;DR: The results demonstrate that multi-joint human movements can be encoded successfully by the CPs, that a learned movement policy can readily be reused to produce robust trajectories towards different targets, and that the parameter space which encodes a policy is suitable for measuring to which extent two trajectories are qualitatively similar.
Proceedings Article

Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data

TL;DR: A new underlying probabilistic model for principal component analysis (PCA) is introduced that shows that if the prior's covariance function constrains the mappings to be linear the model is equivalent to PCA, and is extended by considering less restrictive covariance functions which allow non-linear mappings.
Journal ArticleDOI

Temporal and kinematic properties of motor behavior reflected in mentally simulated action.

TL;DR: Related perceptual, motor, and cognitive performances were examined to reveal the accuracy of the properties of action spontaneously represented when mentally simulating moving one's hand, and suggest that sensorimotor structures support mental simulations of actions.
Journal ArticleDOI

Autonomous Helicopter Aerobatics through Apprenticeship Learning

TL;DR: These apprenticeship learning algorithms have enabled us to significantly extend the state of the art in autonomous helicopter aerobatics, including the first autonomous execution of a wide range of maneuvers, including in-place flips, in- place rolls, loops and hurricanes.