scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Modeling of rectangular on-chip spiral inductors

TL;DR: In this paper, a simple expression for calculating DC inductance of a rectangular spiral inductor is presented and the accuracy of the expression is evaluated using field solver simulations using a broad-band frequency independent model.
Abstract: A simple expression for calculating DC inductance of a rectangular spiral inductor is presented Accuracy of the expression is evaluated using field solver simulations We have presented a broad-band frequency independent model
Citations
More filters
Proceedings ArticleDOI
01 Nov 2018
TL;DR: In this work, the Neural Network Specialists model is outlined; a preliminary approach to solving the inverse spiral inductor design problem using fully connected neural network models.
Abstract: Integrated spiral inductors are a fundamental part of Radio-Frequency (RF) circuits. In certain scenarios, a solution to the inverse spiral inductor design problem is required; given the desired properties of an inductor, locate the most suitable geometric characteristics. This problem does not have a unique solution and current approaches approximate it through a number of differential equations and the subsequent application of optimization techniques that narrow down the set of feasible solutions. In this work, the Neural Network Specialists model is outlined; a preliminary approach to solving the aforementioned problem using fully connected neural network models. The obtained results on a first round of experiments are encouraging, especially in terms of the reduction in time complexity.

4 citations


Cites methods from "Modeling of rectangular on-chip spi..."

  • ...However, this type of analysis can be extremely complicated and thus difficult to be applied in practice; as a result different methodologies have emerged, like the Direct Current (DC) inductance [9]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present simple and accurate expressions for the DC inductance of square, hexagonal, octagonal, and circular spiral inductors, and evaluate the accuracy of their expressions, as well as several previously published inductance expressions, in two ways: by comparison with three-dimensional field solver predictions and by contrast with their own measurements, and also previously published measurements.
Abstract: We present several new simple and accurate expressions for the DC inductance of square, hexagonal, octagonal, and circular spiral inductors. We evaluate the accuracy of our expressions, as well as several previously published inductance expressions, in two ways: by comparison with three-dimensional field solver predictions and by comparison with our own measurements, and also previously published measurements. Our simple expression matches the field solver inductance values typically within around 3%, about an order of magnitude better than the previously published expressions, which have typical errors ground 20% (or more). Comparison with measured values gives similar results: our expressions (and, indeed, the field solver results) match within around 5%, compared to errors of around 20% for the previously published expressions. (We believe most of the additional errors in the comparison to published measured values is due to the variety of experimental conditions under which the inductance was measured.) Our simple expressions are accurate enough for design and optimization of inductors or of circuits incorporating inductors. Indeed, since inductor tolerance is typically on the order of several percent, "more accurate" expressions are not really needed in practice.

1,498 citations

Book
01 Jan 1981
TL;DR: This authoritative compilation of formulas and tables simplifies the design of inductors for electrical engineers features a single simple formula for virtually every type of inductor, together with tables from which essential numerical factors may be interpolated.
Abstract: This authoritative compilation of formulas and tables simplifies the design of inductors for electrical engineers. It features a single simple formula for virtually every type of inductor, together with tables from which essential numerical factors may be interpolated. An esteemed reference, it belongs in the library of every electrical engineer. 1946 edition.

1,296 citations


"Modeling of rectangular on-chip spi..." refers background in this paper

  • ...1(b) can be calculated following [2] as...

    [...]

  • ...Starting from the classical work done by Grover [2], many have worked out expressions for external inductance....

    [...]

Journal ArticleDOI
H. Greenhouse1
TL;DR: In this paper, the authors derived inductance equations for planar thin- or thick-film coils, comparing equations that include negative mutual inductance with those that do not, and presented a computer program developed for calculating inductances for both square and rectangular geometries, the variables considered being track width, space between tracks, and number of turns.
Abstract: Negative mutual inductance results from coupling between two conductors having current vectors in opposite directions As a quantity in electronic circuits, negative mutual inductance is usually so much smaller in magnitude than overall inductance that it can be neglected with little effect In the microelectronic world, however, its neglect can result in inductance values as much as 30 percent too high This paper derives inductance equations for planar thin- or thick-film coils, comparing equations that include negative mutual inductance with those that do not It describes a computer program developed for calculating inductances for both square and rectangular geometries, the variables considered being track width, space between tracks, and number of turns Graphic results are presented for up to 16 turns over an inductance range of 3 nanohenries to 10 microhenries Although details of fabrication are not included, the effects of film thickness and frequency on the mutual-inductance parameter are discussed

1,043 citations


"Modeling of rectangular on-chip spi..." refers methods in this paper

  • ...The Greenhouse method [3] where total inductance is found out by calculating the self inductance of each trace and the mutual inductance between two traces applicable for all geometries....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present a physical model for planar spiral inductors on silicon, which accounts for eddy current effect in the conductor, crossover capacitance between the spiral and center-tap, capacitance in the spiral, substrate ohmic loss, and substrate capacitance.
Abstract: This paper presents a physical model for planar spiral inductors on silicon, which accounts for eddy current effect in the conductor, crossover capacitance between the spiral and center-tap, capacitance between the spiral and substrate, substrate ohmic loss, and substrate capacitance. The model has been confirmed with measured results of inductors having a wide range of layout and process parameters. This scalable inductor model enables the prediction and optimization of inductor performance.

867 citations


"Modeling of rectangular on-chip spi..." refers background in this paper

  • ...Several works [6] [7] described physics based equivalent circuit models for square spirals to enable circuit simulations....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors used classic circuit analysis and network analysis techniques to derive two-port parameters from spiral inductors and transformers and applied them to traditional square and polygon inductors, as well as multilayer metal structures and coupled inductors.
Abstract: Silicon integrated circuit spiral inductors and transformers are analyzed using electromagnetic analysis. With appropriate approximations, the calculations are reduced to electrostatic and magnetostatic calculations. The important effects of substrate loss are included in the analysis. Classic circuit analysis and network analysis techniques are used to derive two-port parameters from the circuits. From two-port measurements, low-order, frequency-independent lumped circuits are used to model the physical behavior over a broad-frequency range. The analysis is applied to traditional square and polygon inductors and transformer structures as well as to multilayer metal structures and coupled inductors. A custom computer-aided-design tool called ASITIC is described, which is used for the analysis, design, and optimization of these structures. Measurements taken over a frequency range from 100 MHz to 5 GHz show good agreement with theory.

745 citations