scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Modeling the partially coherent behavior of few-mode far-infrared grating spectrometers.

TL;DR: In this article , a modal technique for modeling the behavior of spectrometers that allows for the propagation and detection of partially coherent fields, and the inclusion of straylight radiated by warm internal surfaces is presented.
Abstract: Modeling ultra-low-noise far-infrared grating spectrometers has become crucial for the next generation of far-infrared space observatories. Conventional techniques are awkward to apply because of the partially coherent form of the incident spectral field, and the few-mode response of the optics and detectors. We present a modal technique for modeling the behavior of spectrometers that allows for the propagation and detection of partially coherent fields, and the inclusion of straylight radiated by warm internal surfaces. We illustrate the technique by modeling the behavior of the long wavelength band of the proposed SAFARI instrument on the well-studied SPICA mission.
Citations
More filters
Proceedings ArticleDOI
28 Jun 2022
TL;DR: In this paper , the spectral and photometric imaging receiver (SPIRE) was used as a case study to highlight calibration issues observed in-flight, while including straylight. And the authors developed a modal framework to model, analyze, and address these issues.
Abstract: The next generation of astronomical space-based far-infrared (FIR) missions require ultra-sensitive spectroscopy as a diagnostic tool. These instruments use ultra-sensitive detector technologies to attain unprecedented levels of spectral observing sensitivity. The reception patterns of the individual detectors consist of individually coherent orthogonal field distributions, or equivalently, they are few-mode (5 to 20), to increase the spectral-spatial coupling to the astronomical source. However, the disadvantage of few-mode detectors is an increase in coupling to external (from the sky or warm telescope optics) and internal (from the instrument itself) straylight, which can greatly affect the measurement of the source spectrum. Therefore, understanding the spectral-spatial few-mode behavior of these systems in detail, and developing verification and calibration strategies, are crucial to ensure that the science goals of these future mission are met. Since conventional modelling techniques are less suited to address this problem, we developed a modal framework to model, analyze, and address these issues. In this paper, we use Herschel’s spectral and photometric imaging receiver (SPIRE) as a case study, because its optical design is representative for future FIR missions and illustrative to highlight calibration issues observed in-flight, while including straylight. Our analysis consist out of two part. In the first part, we use our modal framework to simulate the few-mode SPIRE Fourier transform spectrometer (FTS). In the second part, we carry out a end-to-end frequency-dependent partially coherent analysis of Herschel-SPIRE. These simulations offer a qualitative explanation for the few-mode behavior observed in-flight. Furthermore, we use the Herschel-SPIRE case-study to demonstrate how the modelling framework can be used to support the design, verification and calibration of spectrometers for future FIR missions. The modal framework is not only limited to the spectrometers discussed, but it can be used to simulated a wide range of spectrometers, such as low-resolution gratings and high-spectral resolution Fabry-Pérot interferometers.
Proceedings ArticleDOI
28 Aug 2022
TL;DR: In this article , the authors developed a modal framework, which uses the notion of optical modes, i.e. an unique set of individually coherent orthogonal field distributions, to propagate an incident electric field through an optical system.
Abstract: We have developed a modal framework [1], which uses the notion of optical modes, i.e. an unique set of individually coherent orthogonal field distributions, to propagate an incident electric field through an optical system. The framework relies on a transmission matrix and Singular Value Decomposition (SVD), to obtained the mode characteristics: their transmission efficiencies and spatial forms over the input and output surface of the optical system. Here, we present a VNA phase and amplitude measurement scheme used for determining the transmission matrix, and we compare the obtained mode characteristics to our model for a pair of limiting slits at 104 GHz, which show good agreement.
References
More filters
Book
01 Jan 1968
TL;DR: The second edition of this respected text considerably expands the original and reflects the tremendous advances made in the discipline since 1968 as discussed by the authors, with a special emphasis on applications to diffraction, imaging, optical data processing, and holography.
Abstract: The second edition of this respected text considerably expands the original and reflects the tremendous advances made in the discipline since 1968. All material has been thoroughly updated and several new sections explore recent progress in important areas, such as wavelength modulation, analog information processing, and holography. Fourier analysis is a ubiquitous tool with applications in diverse areas of physics and engineering. This book explores these applications in the field of optics with a special emphasis on applications to diffraction, imaging, optical data processing, and holography. This book can be used as a textbook to satisfy the needs of several different types of courses, and it is directed toward both engineers ad physicists. By varying the emphasis on different topics and specific applications, the book can be used successfully in a wide range of basic Fourier Optics or Optical Signal Processing courses.

9,800 citations

Journal ArticleDOI
TL;DR: In this paper, the authors apply the theory developed in the preceding paper to a number of questions about timelimited and bandlimited signals, and find the signals which do the best job of simultaneous time and frequency concentration.
Abstract: The theory developed in the preceding paper1 is applied to a number of questions about timelimited and bandlimited signals. In particular, if a finite-energy signal is given, the possible proportions of its energy in a finite time interval and a finite frequency band are found, as well as the signals which do the best job of simultaneous time and frequency concentration.

2,498 citations

01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the extent to which a time series can be concentrated on a finite index set and also have its spectrum concentrated on subinterval of the fundamental period of the spectrum.
Abstract: A discrete time series has associated with it an amplitude spectrum which is a periodic function of frequency. This paper investigates the extent to which a time series can be concentrated on a finite index set and also have its spectrum concentrated on a subinterval of the fundamental period of the spectrum. Key to the analysis are certain sequences, called discrete prolate spheroidal sequences, and certain functions of frequency called discrete prolate spheroidal functions. Their mathematical properties are investigated in great detail, and many applications to signal analysis are pointed out.

1,662 citations

Journal ArticleDOI
23 Oct 2003-Nature
TL;DR: The demonstration of a superconducting detector that is easily fabricated and can readily be incorporated into large arrays, and its sensitivity is already within an order of magnitude of that needed for CMB observations, and the energy resolution is similarly close to the targets required for future X-ray astronomy missions.
Abstract: Cryogenic detectors are extremely sensitive and have a wide variety of applications (particularly in astronomy), but are difficult to integrate into large arrays like a modern CCD (charge-coupled device) camera. As current detectors of the cosmic microwave background (CMB) already have sensitivities comparable to the noise arising from the random arrival of CMB photons, the further gains in sensitivity needed to probe the very early Universe will have to arise from large arrays. A similar situation is encountered at other wavelengths. Single-pixel X-ray detectors now have a resolving power of ΔE < 5 eV for single 6-keV photons, and future X-ray astronomy missions anticipate the need for 1,000-pixel arrays. Here we report the demonstration of a superconducting detector that is easily fabricated and can readily be incorporated into such an array. Its sensitivity is already within an order of magnitude of that needed for CMB observations, and its energy resolution is similarly close to the targets required for future X-ray astronomy missions.

1,429 citations