scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Modelling and performance analysis of a plasmonic biosensor comprising of silicon and chalcogenide materials for detecting refractive index variations of hemoglobin in near infrared

01 Apr 2016-Optik (Urban & Fischer)-Vol. 127, Iss: 7, pp 3517-3522
TL;DR: In this article, a plasmonic biosensor comprising of prism as a light coupling material, gold (Au) as a plasm supporting metal and oxygenated native hemoglobin (Hb) solution as a bio sample operating under attenuated total reflection (ATR) mode has been modelled using the admittance loci method for detecting wavelength and concentration dependent refractive index (RI) variations of oxygenatednative Hb solution for 700nm to 900nm wavelength in near infrared (NIR).
About: This article is published in Optik.The article was published on 2016-04-01. It has received 5 citations till now. The article focuses on the topics: Attenuated total reflection & Prism.
Citations
More filters
Journal ArticleDOI
TL;DR: A simple method for sensing and detecting hemoglobin based on one-dimensional photonic crystals using hemoglobin as a defect layer inside the proposed photonic crystal results in a resonant peak evolving within the bandgaps.
Abstract: Believing that the detection of hemoglobin possesses a vital role in the discovery of many diseases, we present in this work a simple method for sensing and detecting hemoglobin based on one-dimensional photonic crystals. Implementing hemoglobin as a defect layer inside the proposed photonic crystal results in a resonant peak evolving within the bandgaps. The strong dependence of these resonant peaks on concentration and the consequent refractive index are the essential bases of the detection process. The role played by these parameters together with the angle of incidence on performance and efficiency of our sensor is demonstrated. In the vicinity of the investigated results, we demonstrate the values of sensitivity, figure of merit (FOM), signal-to-noise ratio (SNR), and resolution to optimize the performance of our sensor. The numerical results show a significant effect of polarization mode on performance of this sensor. For TE polarization with an angle of incidence equal to 45°, we investigated sensitivity of 167nmRIU-1, SNR of 0.23, FOM of 0.63RIU-1, and resolution of 257 nm.

47 citations

Journal ArticleDOI
TL;DR: In this article, a Bloch Surface Waves (BSW) based sensor is proposed to estimate the haemoglobin concentration in human blood, where a defective top layer is deliberately introduced to confine a surface plasmon-like mode called Bloch mode at the top interface.
Abstract: In this paper, a Bloch Surface Waves (BSW) based sensor is proposed to estimate the haemoglobin concentration in human blood. The behaviour of the sensor is analysed using a transfer matrix method. The proposed structure is designed considering one-dimensional photonic crystal, where a defective top layer is deliberately introduced to confine a surface plasmon-like mode called Bloch mode at the top interface. The effective refractive index of top interface changes along with haemoglobin concentration. Thereby, monitoring the angel of incidence to confine BSW mode can helps in determining the haemoglobin concentration. The sensing capability, FWHM and figure-of-merit of the proposed structure are improved by optimizing the defect layer thicknesses, incident angels and wavelengths. Proposed structure shows an average FWHM and average sensitivity of around 0.00508 and 0.0133°/(g/L) respectively.

39 citations

Journal ArticleDOI
TL;DR: In this article , the authors analyzed the optical interface edge states for a dielectric material-based quasi-periodic photonic crystal (QPhC) structure, where layers are arranged in a Fibonacci configuration to introduce quasiperiodicity and the impact of local symmetric sub-structures on Eigenstate coupling was considered over a wider wavelength range.
Abstract: In this paper, the localization of optical interface edge-states is analyzed for a dielectric material-based quasi-periodic photonic crystal (QPhC) structure. The design comprises a bilayer PhC structure, where layers are arranged in a Fibonacci configuration to introduce quasi-periodicity. The impact of local symmetric sub-structures on Eigenstate coupling is considered over a wider wavelength range. This confirms the localization of interface edge modes for different wavelengths at the structural local resonators, where the number of local resonators depends on the length of the QPhC. The proposed seven-element QPhC structure shows a strong Tamm-like top interface edge mode localization for a 45.04° incident angle at 750 nm operating wavelength, whereas a bulk interface guided mode is also excited for a higher incident angle of around 79°. The investigation facilitates the development of reconfigurable devices to excite both bulk interface and surface interface edge modes with improved field intensities for spectroscopy and sensing applications.

6 citations

Journal ArticleDOI
TL;DR: In this article , a surface plasmon resonance sensor for detecting haemoglobin concentration based on a D-type optical fiber with a graphene-gold surface architecture is proposed, which works in wavelength interrogation mode, with the light wavelength ranging from 400 to 1100 nm.
Abstract: In this study, a surface plasmon resonance sensor for detecting haemoglobin concentration based on a D-type optical fibre with a graphene-gold surface architecture is proposed. The graphene-gold surface architecture included a 50 nm thick gold film and monolayer graphene film, which were decorated on a 10 mm long D-type sensing region. The proposed sensor worked in wavelength interrogation mode, with the light wavelength ranging from 400 to 1100 nm. The authors realised the D-type optical fibre surface polishing process, the gold film vacuum coating process, and the chemical-vapour-deposited graphene's wet transfer process. Furthermore, the fabricated sensors were used to detect the refractive index (RI) of haemoglobin samples, which varied from 1.331 to 1.346. Experiment results show that the fitted RI sensitivity of the sensor decorated with gold and graphene reaches 1874.41 nm/RIU, 4.995% higher than that of the sensor decorated only with gold. The concentration sensitivity of the sensor coated with gold and graphene film is 4.96 nm/(g/dL), and the proposed sensor can provide a resolution of 20.2 mg/dL for haemoglobin concentration detection.
References
More filters
Book
01 Jan 1969
TL;DR: In this paper, the authors present a theoretical analysis of thin-film dielectric materials and apply it to filter and coating applications, showing that layer uniformity and thickness monitoring are important factors affecting layer and coating properties.
Abstract: Introduction. Basic theory. Antireflection coating. Neutral mirrors and beam splitters. Multilayer high-reflectance coatings. Edge filters. Band-pass filters. Tilted coatings. Production methods and thin-film materials. Factors affecting layer and coating properties. Layer uniformity and thickness monitoring. Specification of filters and environmental effects. System considerations: applications of filters and coatings. Other topics. Characteristics of thin-film dielectric materials.

3,301 citations

Journal ArticleDOI
TL;DR: In this paper, it has been shown that the non-radiative mode excited by light can also radiate under certain conditions if they are excited by electrons (grazing incidence of electrons on a rough surface or at normal incidence on a grating).
Abstract: There are two modes of surface plasma waves: 1) Non-radiative modes with phase velocities Cü/k smaller than the velocity of light c. They cannot decay into photons in general. 2) Radiative modes with (o/k > c which couple directly with photons 1. The following paper is concerned with the excitation of these modes by light and their decay into photons. It has been shown that the radiative mode on thin silverand potassium-films can be excited by light and that the mode reradiates light almost into all directions with an intensity maximum at the plasma frequency cOp 2. It had been further observed that the non-radiative modes radiate under certain conditions if they are excited by electrons (grazing incidence of electrons on . a rough surface3 or at normal incidence on a grating 4) . The mechanism of this emission is in these cases always the same: The \"wave vector\" of the roughness of the surface or its irregularity changes the plasmon wave vector k so that a) in the case of the radiative mode light emission is found in directions in addition to that of reflexion and transmission, b) in the case of the non-radiative mode its wave vector is reduced so that the condition /c0, the wave vector of the inhomogeneous wave is (co/c) • Vsq' sin 0O (fq = 2.16 for quartz) and thus can excite a non radiative mode on the boundary of the prism for j/fq sin 0O > 1 or 90° > @o > 43°. If one vaporises a silver film directly on the quartz surface the inhomogeneous light wave penetrates into the silver film and excites a nonradiative mode on the boundary silver/air. The excitation will be highest for those frequencies which fulfill the dispersion relation of these surface plasmons.

2,790 citations

Journal ArticleDOI
TL;DR: In this article, a new method of exciting nonradiative surface plasma waves (SPW) on smooth surfaces, causing also a new phenomena in total reflexion, is described.
Abstract: A new method of exciting nonradiative surface plasma waves (SPW) on smooth surfaces, causing also a new phenomena in total reflexion, is described. Since the phase velocity of the SPW at a metal-vacuum surface is smaller than the velocity of light in vacuum, these waves cannot be excited by light striking the surface, provided that this is perfectly smooth. However, if a prism is brought near to the metal vacuum-interface, the SPW can be excited optically by the evanescent wave present in total reflection. The excitation is seen as a strong decrease in reflection for the transverse magnetic light and for a special angle of incidence. The method allows of an accurate evaluation of the dispersion of these waves. The experimental results on a silver-vacuum surface are compared with the theory of metal optics and are found to agree within the errors of the optical constants.

2,707 citations

Journal ArticleDOI
TL;DR: The surface plasmon resonance (SPR) is a new optical technique in the field of chemical sensing as discussed by the authors, which can be used for gas detection, together with results from exploratory experiments with relevance to biosensing.

2,243 citations

Journal ArticleDOI
TL;DR: Theoretical analysis and comparison of the sensitivity of surface plasmon resonance (SPR) sensors using diffraction at gratings and attenuated total reflection (ATR) in prism couplers for two detection methods-resonant angle interrogation and resonant wavelength interrogation is presented in this article.
Abstract: Theoretical analysis and comparison of the sensitivity of surface plasmon resonance (SPR) sensors using diffraction at gratings and attenuated total reflection (ATR) in prism couplers for two detection methods-resonant angle interrogation and resonant wavelength interrogation is presented. Analytical expressions for sensitivity of these SPR sensors are derived and the influence of the major design parameters of the sensing structures on the sensor sensitivity is discussed. The analysis shows that grating-based SPR sensors using wavelength interrogation are much less sensitive then their prism coupler-based counterparts. In the angular interrogation mode, the sensitivity of SPR sensors using diffraction gratings depends on the diffraction order and does not differ much from that of SPR sensors based on prism couplers.

632 citations