scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Modelling galaxy spectra in presence of interstellar dust – II. From the ultraviolet to the far-infrared

11 Aug 2006-Monthly Notices of the Royal Astronomical Society (Oxford University Press)-Vol. 370, Iss: 3, pp 1454-1478
TL;DR: In this article, the spectral energy distributions (SEDs) of different morphological types of galaxies are derived by using a simple geometrical model for each type of galaxy, based on a robust model of chemical evolution that assumes a suitable prescription for gas infall, initial mass function, star formation rate and stellar ejecta.
Abstract: In this paper, we present spectrophotometric models for galaxies of different morphological type whose spectral energy distributions (SEDs) take into account the effect of dust in absorbing UV-optical light and re-emitting it in the infrared (IR). The models contain three main components: (i) the diffuse interstellar medium (ISM) composed of gas and dust whose emission and extinction properties have already been studied in detail by Piovan et al. (2006), (ii) the large complexes of molecular clouds (MCs) in which new stars are formed and (iii) the stars of any age and chemical composition. The galaxy models stand on a robust model of chemical evolution that assuming a suitable prescription for gas infall, initial mass function, star formation rate and stellar ejecta provides the total amounts of gas and stars present at any age together with their chemical history. The chemical models are taylored in such a way to match the gross properties of galaxies of different morphological type. In order to describe the interaction between stars and ISM in building up the total SED of a galaxy, one has to know the spatial distribution of gas and stars. This is made adopting a simple geometrical model for each type of galaxy. The total gas and star mass provided by the chemical model are distributed over the whole volume by means of suitable density profiles, one for each component and depending on the galaxy type (spheroidal, disk and disk plus bulge). The galaxy is then split in suitable volume elements to each of which the appropriate amounts of stars, MCs and ISM are assigned. Each elemental volume bin is at the same time source of radiation from the stars inside and absorber and emitter of radiation from and to all other volume bins and the ISM in between. They are the elemental seeds to calculate the total SED. Using the results for the properties of the ISM and the Single Stellar Populations (SSPs) presented by Piovan et al. (2006) we derive the SEDs of galaxies of different morphological type. First the technical details of the method are described and the basic relations driving the interaction between the physical components of the galaxy are presented. Second, the main parameters are examined and their effects on the SED of three prototype galaxies (a disk, an elliptical and a starburster) are highlighted. The final part of the paper is devoted to assess the ability of our galaxy models in reproducing the SEDs of a few real galaxies of the Local Universe.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The GALEV (Galev Evolutionary Evolutionary Models for Galaxies) model as mentioned in this paper describes the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological time-scales of ≥13 Gyr.
Abstract: GALEV (GALaxy EVolution) evolutionary synthesis models describe the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological time-scales of ≥13 Gyr from the onset of star formation shortly after the big bang until today. For galaxies, GALEV includes a simultaneous treatment of the chemical evolution of the gas and the spectral evolution of the stellar content, allowing for what we call a chemically consistent treatment: we use input physics (stellar evolutionary tracks, stellar yields and model atmospheres) for a large range of metallicities and consistently account for the increasing initial abundances of successive stellar generations. Here we present the latest version of the GALEV evolutionary synthesis models that are now interactively available at http://www.galev.org. We review the currently used input physics, and also give details on how this physics is implemented in practice. We explain how to use the interactive web interface to generate models for user-defined parameters and also give a range of applications that can be studied using GALEV, ranging from star clusters, undisturbed galaxies of various types E–Sd to starburst and dwarf galaxies, both in the local and the high-redshift Universe.

288 citations

Journal ArticleDOI
TL;DR: In this article, the stellar spectral synthesis code Starburst99, the nebular modeling code MAPPINGS III and a one-dimensional dynamical evolution model of H II regions around massive clusters of young stars were combined to generate improved models of the spectral energy distribution (SED) of starburst galaxies.
Abstract: We combine the stellar spectral synthesis code Starburst99, the nebular modeling code MAPPINGS III and a one-dimensional dynamical evolution model of H II regions around massive clusters of young stars to generate improved models of the spectral energy distribution (SED) of starburst galaxies. We introduce a compactness parameter, , which characterizes the specific intensity of the radiation field at ionization fronts in H II regions and which controls the shape of the far-infrared (IR) dust reemission, often referred to loosely as the dust temperature. We also investigate the effect of metallicity on the overall SED and in particular, on the strength of the polycyclic aromatic hydrocarbon (PAH) features. We provide templates for the mean emission produced by the young compact H II regions, the older (10-100 Myr) stars and for the wavelength-dependent attenuation produced by a foreground screen of the dust used in our model. We demonstrate that these components may be combined to produce a excellent fit to the observed SEDs of star formation-dominated galaxies which are often used as templates (Arp 220 and NGC 6240). This fit extends from the Lyman limit to wavelengths of about 1 mm. The methods presented in both this paper and in the previous papers of this series allow the extraction of the physical parameters of the starburst region (star formation rates, star formation rate history, mean cluster mass, metallicity, dust attenuation, and pressure) from the analysis of the pan-spectral SED.

252 citations

Journal ArticleDOI
TL;DR: In this article, the authors combine far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, COSMOS fields, and it is possible to sample the 8-500μm spectral energy distributions (SEDs) of galaxies with at least 7-10 bands.
Abstract: Combining far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields, it is possible to sample the 8–500 μm spectral energy distributions (SEDs) of galaxies with at least 7–10 bands. Extending to the UV, optical, and near-infrared, the number of bands increases up to 43. We reproduce the distribution of galaxies in a carefully selected restframe ten colors space, based on this rich data-set, using a superposition of multivariate Gaussian modes. We use this model to classify galaxies and build median SEDs of each class, which are then fitted with a modified version of the magphys code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an active galactic nucleus (AGN). The color distribution of galaxies in each of the considered fields can be well described with the combination of 6–9 classes, spanning a large range of far- to near-infrared luminosity ratios, as well as different strength of the AGN contribution to bolometric luminosities. The defined Gaussian grouping is used to identify rare or odd sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z ~ 1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eightother popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10–20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of SED templates. Finally, the library is used to classify 24 μm detected sources in PEP GOODS fields on the basis of AGN content, L(60)/L(100) color and L(160)/L(1.6) luminosity ratio. AGN appear to be distributed in the stellar mass (M_∗) vs. star formation rate (SFR) space along with all other galaxies, regardless of the amount of infrared luminosity they are powering, with the tendency to lie on the high SFR side of the “main sequence”. The incidence of warmer star-forming sources grows for objects with higher specific star formation rates (sSFR), and they tend to populate the “off-sequence” region of the M_∗ − SFR − z space.

203 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the dependence of the total-infrared to UV luminosity ratio method for calculating the UV dust attenuation A(UV) from the age of the underlying stellar populations by using a library of spectral energy distributions for galaxies with different star formation histories.
Abstract: We investigate the dependence of the total-infrared (TIR) to UV luminosity ratio method for calculating the UV dust attenuation A(UV) from the age of the underlying stellar populations by using a library of spectral energy distributions for galaxies with different star formation histories. Our analysis confirms that the TIR/UV vs. A(UV) relation varies significantly with the age of the underlying stellar population: i.e. for the same TIR/UV ratio, systems with low specific star formation rate (SSFR) suffer a lower UV attenuation than starbursts. Using a sample of nearby field and cluster spiral galaxies we show that the use of a standard (i.e. age independent) TIR/UV vs. A(UV) relation leads to a systematic overestimate up to 2 magnitudes of the amount of UV dust attenuation suffered by objects with low SSFR and in particular HI-deficient star forming cluster galaxies. This result points out that the age independent $TIR/UV$ vs. $A(UV)$ relation cannot be used to study the UV properties of large samples of galaxies including low star-forming systems and passive spirals. Therefore we give some simple empirical relations from which the UV attenuation can be estimated taking into account its dependence on the age of the stellar populations, providing a less biased view of UV properties of galaxies.

164 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use the latest Padova isochrones, with detailed modelling of the Thermally Pulsing AGB phase, to update theoretical colour-M/L relations in the optical and NIR and discuss the consequences for the estimated stellar masses in external galaxies.
Abstract: Colour-M/L (mass-to-light) relations are a popular recipe to derive stellar mass in external galaxies. Stellar mass estimates often rely on near infrared (NIR) photometry, considered an optimal tracer since it is little affected by dust and by the "frosting" effect of recent star formation episodes. However, recent literature has highlighted that theoretical estimates of the NIR M/L ratio strongly depend on the modelling of the Asymptotic Giant Branch (AGB) phase. We use the latest Padova isochrones, with detailed modelling of the Thermally Pulsing AGB phase, to update theoretical colour-M/L relations in the optical and NIR and discuss the consequences for the estimated stellar masses in external galaxies. We also discuss the effect of attenuation by interstellar dust on colour-M/L relations in the statistical case of large galaxy samples.

157 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a library of 183 588 synthetic spectra based on Kurucz's ATLAS9 models is presented for the far red spectral interval (7653-8747 A), characterized by 3500 K < T eff < 47500 K, 0.0 < log g ≤ 5.0, -3.5, 0 < V rot < 500 km s -1, ξ = 2 km s −1.
Abstract: A library of 183 588 synthetic spectra based on Kurucz's ATLAS9 models is presented for the far red spectral interval (7653-8747 A). It is characterized by 3500 K < T eff < 47500 K, 0.0 < log g ≤ 5.0, -3.0 < [M/H] ≤ +0.5, 0 < V rot < 500 km s -1 , ξ = 2 km s -1 . The whole grid of spectra is calculated for resolving powers 8500, 11 500 and 20 000. A section of the grid is also computed for [α/Fe] = +0.4 and for microturbulent velocities 0 and 4 km s -1 . The library covers the wavelength ranges and resolutions of the two ambitious spectroscopic surveys by the ground experiment RAVE and the space mission GAIA. Cross-sections across the multi-dimensional data-cube are used to illustrate the behaviour of the strongest spectral lines. Interpretation of real data will have to include interpolation to grid substeps. We present a simple estimate of the accuracy of such a procedure.

61 citations

Journal ArticleDOI
TL;DR: In this paper, an evolutionary spectral energy distribution (SED) model of a starburst region, from the ultraviolet to submillimetre wavelengths, was constructed to derive the star formation rate, optical depth by dust and apparent effective radius of starburst regions at various wavelengths.
Abstract: We construct an evolutionary spectral energy distribution (SED) model of a starburst region, from the ultraviolet to submillimetre wavelengths. This model allows us to derive the star formation rate, optical depth by dust and apparent effective radius of starburst regions at various wavelengths; as a result, the intrinsic surface brightness of starburst regions can be derived. Using this SED model, we analyse 16 UV-selected starburst galaxies and 10 ultraluminous infrared galaxies. The derived star formation rates and optical depths are compared with emission line measurements and found to be consistent. The derived apparent effective radii are also consistent with observations. From the SED analysis, we find a bimodal property of the star formation rate with the optical depth and the compactness of stellar distributions. While mild starbursts have a limiting intrinsic surface brightness L(bol) x r_e^{-2} ~ 10^{12} Lsun kpc^{-2}, intense starbursts tend to be more heavily obscured and concentrated within a characteristic scale of r_e ~ 0.3 kpc. We suggest that the mild starbursts can be triggered by a self-gravitating disc instability in which feedback is effective in the shallow gravitational potential. On the other hand, the intense starbursts can be induced via an external dynamical perturbation like galaxy merging, in which feedback is less effective due to the deep gravitational potential attained by the large gas concentration within the central starburst region.

58 citations

Journal ArticleDOI
TL;DR: In this article, the authors present maps of dust emission at 7 ma nd 15m/7m intensity ratios of selected regions in 43 spiral galaxies observed with ISOCAM.
Abstract: We present maps of dust emission at 7 ma nd 15m/7m intensity ratios of selected regions in 43 spiral galaxies observed with ISOCAM. This atlas is a complement to studies based on these observations, dealing with star formation in centers of barred galaxies and in spiral disks. It is accompanied by a detailed description of data reduction and an inventory of generic morphological properties in groups dened according to bar strength and HI gas content.

58 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the radial brightness distributions in the disks of three nearby face-on spirals: M 51, NGC 3631, and NGC 4321 (M 100) in the photometric bands B through I, with the addition of the K band for M 51 only.
Abstract: We have measured the radial brightness distributions in the disks of three nearby face-on spirals: M 51, NGC 3631, and NGC 4321 (M 100) in the photometric bands B through I, with the addition of the K band for M 51 only. The measurements were made by averaging azimuthally, in three modes, the two-dimensional surface brightness over the disks in photometric images of the objects in each band: (a) over each disk as a whole, (b) over the spiral arms alone, and (c) over the interarm zones alone. From these profiles scale-lengths were derived for comparison with schematic exponential disk models incorporating interstellar dust. These models include both absorption and scattering in their treatment of radiative transfer. The model fits show that the arms exhibit greater optical depth in dust than the interarm zones. The average fraction of emitted stellar light in V which is extinguished by dust within 3 scale-lengths of the center of each galaxy does not rise above 20% in any of them. We show that this conclusion is also valid for models with similar overall quantities of dust, but where this is concentrated in lanes. These can also account for the observed scale-lengths, and their variations.

57 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a model for galaxy formation and evolution in the presence of dust, including graphite, silicates and polycyclic aromatic hydrocarbons (PAHs).
Abstract: The advent of modern infrared astronomy has brought into evidence the role played by the interstellar dust in galaxy formation and evolution. Therefore, to fully exploit modern data, realistic spectrophotometric models of galaxies must include this important component of the interstellar medium (ISM). In this paper, the first of a series of two devoted to modelling the spectra of galaxies of different morphological type in the presence of dust, we present our description of the dust both in the diffuse ISM and in the molecular clouds (MCs). Our galaxy model contains three interacting components: the diffuse ISM, made of gas and dust, the large complexes of MCs in which active star formation occurs and, finally, the populations of stars that are no longer embedded in the dusty environment of their parental MCs. Our model for the dust takes into account three components, i.e. graphite, silicates and polycyclic aromatic hydrocarbons (PAHs). We consider and adapt to our aims two prescriptions for the size distribution of the dust grains and two models for the emission of the dusty ISM. We cross-check the emission and extinction models of the ISM by calculating the extinction curves and the emission for the typical environments of the Milky Way (MW) and the Large and Small Magellanic Clouds (LMC and SMC) and by comparing the results with the observational data. The final model we have adopted is a hybrid one which stems from combining the analysis of Guhathakurta & Draine for the emission of graphite and silicates and Puget, Leger & Boulanger for the PAH emission, and using the distribution law of Weingartner & Draine and the ionization model for PAHs of Weingartner & Draine. We apply the model to calculate the spectral energy distribution (SED) of single stellar populations (SSPs) of different age and chemical composition, which may be severely affected by dust at least in two types of stars: the young, massive stars while they are still embedded in their parental MCs and the intermediate- and low-mass asymptotic giant branch (AGB) stars when they form their own dust shell around. We use the ‘ray-tracing’ method to solve the problem of radiative transfer and to calculate extended libraries of SSP SEDs. Particular care is taken to model the contribution from PAHs, introducing different abundances of C in the population of very small carbonaceous grains (VSGs) and different ionization states in PAHs. The SEDs of young SSPs are then compared with observational data of star-forming regions of four local galaxies successfully reproducing their SEDs from the ultraviolet (UV)-optical regions to the mid- and far-infrared region (MIR and FIR, respectively).

56 citations