scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Modelling galaxy spectra in presence of interstellar dust – II. From the ultraviolet to the far-infrared

11 Aug 2006-Monthly Notices of the Royal Astronomical Society (Oxford University Press)-Vol. 370, Iss: 3, pp 1454-1478
TL;DR: In this article, the spectral energy distributions (SEDs) of different morphological types of galaxies are derived by using a simple geometrical model for each type of galaxy, based on a robust model of chemical evolution that assumes a suitable prescription for gas infall, initial mass function, star formation rate and stellar ejecta.
Abstract: In this paper, we present spectrophotometric models for galaxies of different morphological type whose spectral energy distributions (SEDs) take into account the effect of dust in absorbing UV-optical light and re-emitting it in the infrared (IR). The models contain three main components: (i) the diffuse interstellar medium (ISM) composed of gas and dust whose emission and extinction properties have already been studied in detail by Piovan et al. (2006), (ii) the large complexes of molecular clouds (MCs) in which new stars are formed and (iii) the stars of any age and chemical composition. The galaxy models stand on a robust model of chemical evolution that assuming a suitable prescription for gas infall, initial mass function, star formation rate and stellar ejecta provides the total amounts of gas and stars present at any age together with their chemical history. The chemical models are taylored in such a way to match the gross properties of galaxies of different morphological type. In order to describe the interaction between stars and ISM in building up the total SED of a galaxy, one has to know the spatial distribution of gas and stars. This is made adopting a simple geometrical model for each type of galaxy. The total gas and star mass provided by the chemical model are distributed over the whole volume by means of suitable density profiles, one for each component and depending on the galaxy type (spheroidal, disk and disk plus bulge). The galaxy is then split in suitable volume elements to each of which the appropriate amounts of stars, MCs and ISM are assigned. Each elemental volume bin is at the same time source of radiation from the stars inside and absorber and emitter of radiation from and to all other volume bins and the ISM in between. They are the elemental seeds to calculate the total SED. Using the results for the properties of the ISM and the Single Stellar Populations (SSPs) presented by Piovan et al. (2006) we derive the SEDs of galaxies of different morphological type. First the technical details of the method are described and the basic relations driving the interaction between the physical components of the galaxy are presented. Second, the main parameters are examined and their effects on the SED of three prototype galaxies (a disk, an elliptical and a starburster) are highlighted. The final part of the paper is devoted to assess the ability of our galaxy models in reproducing the SEDs of a few real galaxies of the Local Universe.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The GALEV (Galev Evolutionary Evolutionary Models for Galaxies) model as mentioned in this paper describes the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological time-scales of ≥13 Gyr.
Abstract: GALEV (GALaxy EVolution) evolutionary synthesis models describe the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological time-scales of ≥13 Gyr from the onset of star formation shortly after the big bang until today. For galaxies, GALEV includes a simultaneous treatment of the chemical evolution of the gas and the spectral evolution of the stellar content, allowing for what we call a chemically consistent treatment: we use input physics (stellar evolutionary tracks, stellar yields and model atmospheres) for a large range of metallicities and consistently account for the increasing initial abundances of successive stellar generations. Here we present the latest version of the GALEV evolutionary synthesis models that are now interactively available at http://www.galev.org. We review the currently used input physics, and also give details on how this physics is implemented in practice. We explain how to use the interactive web interface to generate models for user-defined parameters and also give a range of applications that can be studied using GALEV, ranging from star clusters, undisturbed galaxies of various types E–Sd to starburst and dwarf galaxies, both in the local and the high-redshift Universe.

288 citations

Journal ArticleDOI
TL;DR: In this article, the stellar spectral synthesis code Starburst99, the nebular modeling code MAPPINGS III and a one-dimensional dynamical evolution model of H II regions around massive clusters of young stars were combined to generate improved models of the spectral energy distribution (SED) of starburst galaxies.
Abstract: We combine the stellar spectral synthesis code Starburst99, the nebular modeling code MAPPINGS III and a one-dimensional dynamical evolution model of H II regions around massive clusters of young stars to generate improved models of the spectral energy distribution (SED) of starburst galaxies. We introduce a compactness parameter, , which characterizes the specific intensity of the radiation field at ionization fronts in H II regions and which controls the shape of the far-infrared (IR) dust reemission, often referred to loosely as the dust temperature. We also investigate the effect of metallicity on the overall SED and in particular, on the strength of the polycyclic aromatic hydrocarbon (PAH) features. We provide templates for the mean emission produced by the young compact H II regions, the older (10-100 Myr) stars and for the wavelength-dependent attenuation produced by a foreground screen of the dust used in our model. We demonstrate that these components may be combined to produce a excellent fit to the observed SEDs of star formation-dominated galaxies which are often used as templates (Arp 220 and NGC 6240). This fit extends from the Lyman limit to wavelengths of about 1 mm. The methods presented in both this paper and in the previous papers of this series allow the extraction of the physical parameters of the starburst region (star formation rates, star formation rate history, mean cluster mass, metallicity, dust attenuation, and pressure) from the analysis of the pan-spectral SED.

252 citations

Journal ArticleDOI
TL;DR: In this article, the authors combine far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, COSMOS fields, and it is possible to sample the 8-500μm spectral energy distributions (SEDs) of galaxies with at least 7-10 bands.
Abstract: Combining far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields, it is possible to sample the 8–500 μm spectral energy distributions (SEDs) of galaxies with at least 7–10 bands. Extending to the UV, optical, and near-infrared, the number of bands increases up to 43. We reproduce the distribution of galaxies in a carefully selected restframe ten colors space, based on this rich data-set, using a superposition of multivariate Gaussian modes. We use this model to classify galaxies and build median SEDs of each class, which are then fitted with a modified version of the magphys code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an active galactic nucleus (AGN). The color distribution of galaxies in each of the considered fields can be well described with the combination of 6–9 classes, spanning a large range of far- to near-infrared luminosity ratios, as well as different strength of the AGN contribution to bolometric luminosities. The defined Gaussian grouping is used to identify rare or odd sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z ~ 1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eightother popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10–20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of SED templates. Finally, the library is used to classify 24 μm detected sources in PEP GOODS fields on the basis of AGN content, L(60)/L(100) color and L(160)/L(1.6) luminosity ratio. AGN appear to be distributed in the stellar mass (M_∗) vs. star formation rate (SFR) space along with all other galaxies, regardless of the amount of infrared luminosity they are powering, with the tendency to lie on the high SFR side of the “main sequence”. The incidence of warmer star-forming sources grows for objects with higher specific star formation rates (sSFR), and they tend to populate the “off-sequence” region of the M_∗ − SFR − z space.

203 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the dependence of the total-infrared to UV luminosity ratio method for calculating the UV dust attenuation A(UV) from the age of the underlying stellar populations by using a library of spectral energy distributions for galaxies with different star formation histories.
Abstract: We investigate the dependence of the total-infrared (TIR) to UV luminosity ratio method for calculating the UV dust attenuation A(UV) from the age of the underlying stellar populations by using a library of spectral energy distributions for galaxies with different star formation histories. Our analysis confirms that the TIR/UV vs. A(UV) relation varies significantly with the age of the underlying stellar population: i.e. for the same TIR/UV ratio, systems with low specific star formation rate (SSFR) suffer a lower UV attenuation than starbursts. Using a sample of nearby field and cluster spiral galaxies we show that the use of a standard (i.e. age independent) TIR/UV vs. A(UV) relation leads to a systematic overestimate up to 2 magnitudes of the amount of UV dust attenuation suffered by objects with low SSFR and in particular HI-deficient star forming cluster galaxies. This result points out that the age independent $TIR/UV$ vs. $A(UV)$ relation cannot be used to study the UV properties of large samples of galaxies including low star-forming systems and passive spirals. Therefore we give some simple empirical relations from which the UV attenuation can be estimated taking into account its dependence on the age of the stellar populations, providing a less biased view of UV properties of galaxies.

164 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use the latest Padova isochrones, with detailed modelling of the Thermally Pulsing AGB phase, to update theoretical colour-M/L relations in the optical and NIR and discuss the consequences for the estimated stellar masses in external galaxies.
Abstract: Colour-M/L (mass-to-light) relations are a popular recipe to derive stellar mass in external galaxies. Stellar mass estimates often rely on near infrared (NIR) photometry, considered an optimal tracer since it is little affected by dust and by the "frosting" effect of recent star formation episodes. However, recent literature has highlighted that theoretical estimates of the NIR M/L ratio strongly depend on the modelling of the Asymptotic Giant Branch (AGB) phase. We use the latest Padova isochrones, with detailed modelling of the Thermally Pulsing AGB phase, to update theoretical colour-M/L relations in the optical and NIR and discuss the consequences for the estimated stellar masses in external galaxies. We also discuss the effect of attenuation by interstellar dust on colour-M/L relations in the statistical case of large galaxy samples.

157 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors presented the deepest sub-mm survey of the sky to date, taken with the SCUBA camera on the James Clerk Maxwell Telescope and centred on the Hubble Deep Field.
Abstract: The advent of sensitive sub-mm array cameras now allows a proper census of dust-enshrouded massive star-formation in very distant galaxies, previously hidden activity to which even the faintest optical images are insensitive. We present the deepest sub-mm survey of the sky to date, taken with the SCUBA camera on the James Clerk Maxwell Telescope and centred on the Hubble Deep Field. The high source density found in this image implies that the survey is confusion-limited below a flux density of 2 mJy. However, within the central 80 arcsec radius independent analyses yield 5 reproducible sources with S(850um) > 2 mJy which simulations indicate can be ascribed to individual galaxies. We give positions and flux densities for these, and furthermore show using multi-frequency photometric data that the brightest sources in our map lie at redshifts z~3. These results lead to integral source counts which are completely inconsistent with a no-evolution model, and imply that massive star-formation activity continues at redshifts > 2. The combined brightness of the 5 most secure sources in our map is sufficient to account for 30 - 50% of the previously unresolved sub-mm background, and we estimate statistically that the entire background is resolved at about the 0.3 mJy level. Finally we discuss possible optical identifications and redshift estimates for the brightest sources. One source appears to be associated with an extreme starburst galaxy at z~1, whilst the remaining four appear to lie in the redshift range 2 < z < 4. This implies a star-formation density over this redshift range that is at least five times higher than that inferred from the ultraviolet output of HDF galaxies.

1,193 citations

Journal ArticleDOI
TL;DR: In this article, the effects of a dusty interstellar medium have been included with particular care, in which the residual fraction of gas in the galaxy is divided into two phases: the star-forming molecular clouds and the diffuse medium.
Abstract: We present models of photometric evolution of galaxies in which the effects of a dusty interstellar medium have been included with particular care. A chemical evolution code follows the star formation rate, the gas fraction, and the metallicity, basic ingredients for the stellar population synthesis. The latter is performed with a grid of integrated spectra of simple stellar populations (SSP) of different ages and metallicities, in which the effects of dusty envelopes around asymptotic giant branch (AGB) stars are included. The residual fraction of gas in the galaxy is divided into two phases: the star-forming molecular clouds and the diffuse medium. The relative amount is a model parameter. The molecular gas is subdivided into clouds of given mass and radius: it is supposed that each SSP is born within the cloud and progressively escapes it. The emitted spectrum of the star-forming molecular clouds is computed with a radiative transfer code. The diffuse dust emission (cirrus) is derived by describing the galaxy as an axially symmetric system, in which the local dust emissivity is consistently calculated as a function of the local field intensity due to the stellar component. Effects of very small grains, subject to temperature fluctuations, as well as polycyclic aromatic hydrocarbons (PAHs) are included. The model is compared and calibrated with available data of normal and starburst galaxies in the local universe, in particular new broadband and spectroscopic Infrared Space Observatory (ISO) observations. It will be a powerful tool to investigate the star formation, the initial mass function (IMF), supernova rate (SNR) in nearby starbursts and normal galaxies, as well as to predict the evolution of luminosity functions of different types of galaxies at wavelengths covering four decades.

1,132 citations

Journal ArticleDOI
TL;DR: In this article, the optical properties of graphite, silicate, and SiC grains over the wavelength range 1000 microns - 1 A are calculated for grains in the 0.005-10 micron size range.
Abstract: The optical properties of graphite, silicate, and SiC grains over the wavelength range 1000 microns - 1 A are calculated for grains in the 0.005-10-micron size range. Both graphite + silicate (MRN) and graphite + SiC grain mixtures are considered, with various grain size distributions. A detailed radiative transfer calculation is performed to obtain constraints on the emission properties of dust in AGN in either 'optically thin' or optically thick configurations. Warm graphite + silicate or graphite + SiC dust (T is greater than 200 K) with the MRN size distribution and a column density less than about 10 exp 23/sq cm produces a strong silicate or SiC emission feature. Such dust cannot be responsible for the observed IR emission from AGN. MRN dust with a high optical depth at 10 microns produces an emission feature with an amplitude of about 57 percent, in excess of the typical observational limit for most objects. Reddening of the broad emission lines and continuum is unlikely to be common.

1,102 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an ISO SWS and ISOPHOT-S, mid-infrared spectroscopic survey of 15 ultra-luminous IRAS galaxies.
Abstract: We present an ISO SWS and ISOPHOT-S, mid-infrared spectroscopic survey of 15 ultra-luminous IRAS galaxies. We combine the survey results with a detailed case study, based on near-IR and mm imaging spectroscopy, of one of the sample galaxies (UGC 5101). We compare the near- and mid-IR characteristics of these ultra-luminous galaxies to ISO and literature data of thirty starburst and active galactic nuclei (AGN), template galaxies. We find that 1) 70-80% of the ultra-luminous IRAS galaxies in our sample are predominantly powered by recently formed massive stars. 20-30% are powered by a central AGN. These conclusions are based on a new infrared 'diagnostic diagram' involving the ratio of high to low excitation mid-IR emission lines on the one hand, and on the strength of the 7.7um PAH feature on the other hand. 2) at least half of the sources probably have simultaneously an active nucleus and starburst activity in a 1-2 kpc diameter circum-nuclear disk/ring. 3) the mid-infrared emitting regions are highly obscured. After correction for these extinctions, we estimate that the star forming regions in ULIRGs have ages between 10^7 and 10^8 years, similar to but somewhat larger than those found in lower luminosity starburst galaxies. 4) in the sample we have studied there is no obvious trend for the AGN component to dominate in the most compact, and thus most advanced mergers. Instead, at any given time during the merger evolution, the time dependent compression of the circum-nuclear interstellar gas, the accretion rate onto the central black hole and the associated radiation efficiency may determine whether star formation or AGN activity dominates the luminosity of the system.

1,098 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship of column density to extinction was established, and new determinations for (C-13)O column densities were given for a range of visual extinctions extended to beyond 20 mag.
Abstract: Carbon monoxide column densities are compared to visual extinctions toward field stars in the rho Oph and Taurus molecular cloud complexes. The relationship of C(0-18) column density to extinction is established, and new determinations for (C-13)O column densities are given for a range of visual extinctions extended to beyond 20 mag. A prescription for determining hydrogen column densities and masses of molecular clouds from observations of CO isotopes is presented and discussed critically. These measurements agree well with the predictions of gas phase chemistry models which include chemical fractionation and selective isotopic photodestruction. The functional dependence of the C(O-18) column density on extinction is characterized by two different regimes separated by a distinct transition observed to occur at 4 mag in both molecular cloud complexes, whereas the functional dependence of (C-13)O is quite different in the two regions. Some saturation is found to occur for C(O-18) emission at high visual extinction and use the rarer isotopic species C(O-17) and (C-13)(O-18) to correct for it.

1,072 citations