scispace - formally typeset
Journal ArticleDOI

Modelling of mineral precipitation in fractures with variable aperture

Reads0
Chats0
TLDR
In this paper, a 1D mathematical model is presented to simulate the geochemical filling of natural fractures, where the fracture walls have been represented by simple mathematical functions to reflect variable aperture.
Abstract
Fractures act as a highly permeable conduit for flow in naturally fractured reservoir. Geo-chemical reactions inside fractures may lead to partial or complete filling of pore spaces inside fractures over time. This reduction in fracture aperture directly affects its capability to transport fluid. The current study presents a 1-D mathematical model to simulate the geochemical filling of natural fractures. The fracture walls have been represented by simple mathematical functions to reflect variable aperture of natural fractures. Mass transfer through convection/diffusion and mineral precipitation due to precipitation/dissolution reaction were solved as a simplified mathematical representation of the actual processes. Precipitation reaction is coupled with mass transport by the fluid to ensure mass conservation of reacting components. For simplification, calcite precipitation in fracture has been modelled. The effect of pressure drop, diffusion constant, type of fracture aperture profile on evolution...

read more

Citations
More filters

VALIDITY OF CUBIC LAW FOR FLUID FLOW IN A DEFORMABLE ROCK FRACTURE - eScholarship

Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.
Journal ArticleDOI

Effect of Salinity on Silica Nanoparticle Adsorption Kinetics and Mechanisms for Fluid/Rock Interaction with Calcite.

TL;DR: Estimates of the surface forces confirmed that nanoparticle–mineral interaction is less attractive in LSW as compared to SSW and DIW, and indicated a reduction in the adsorption rate with increasing nanoparticle concentration in L SW.
Journal ArticleDOI

Darcy-and pore-scale issues associated with multi-phase fluid flow through a petroleum reservoir

TL;DR: In this article, the authors focus on the constraints associated with the extended version of Darcy's law that is used to describe the multiphase flow through a porous media; and in particular, a petroleum reservoir.
References
More filters
Journal ArticleDOI

Validity of Cubic Law for fluid flow in a deformable rock fracture

TL;DR: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm.

VALIDITY OF CUBIC LAW FOR FLUID FLOW IN A DEFORMABLE ROCK FRACTURE - eScholarship

Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.
Book

Geochemistry of Sedimentary Carbonates

TL;DR: The Oceanic Carbonate System and Calcium Carbonate Accumulation in Deep Sea Sediments are discussed in this article, where the CO2-Carbonic Acid System and Solution Chemistry are discussed.
Journal ArticleDOI

The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition

TL;DR: The concentrations of Mg2+ and Sr2+ incorporated within calcite overgrowths precipitated from seawater and related solutions, determined at 25°C, were independent of the precipitation rate over approximately an order of magnitude as mentioned in this paper.
Journal ArticleDOI

Seismic pumping—a hydrothermal fluid transport mechanism

TL;DR: The dilatancy/fluid-diffusion mechanism for shallow earthquakes is a consequence that considerable volumes of fluid are rapidly redistributed in the crust following seismic faulting as discussed by the authors, which is borne out by the outpourings of warm groundwater which have been observed along fault traces following some moderate (M5-M7) earthquakes.
Related Papers (5)