scispace - formally typeset
Open AccessJournal ArticleDOI

Modern Approaches to Exact Diagonalization and Selected Configuration Interaction with the Adaptive Sampling CI Method

Reads0
Chats0
TLDR
This work shows that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multipli- cation.
Abstract
Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an increasingly powerful tool for solving quantum Hamiltonians. In this work, we build on recent advances from the adaptive sampling configuration interaction (ASCI) algorithm. We show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The ASCI search algorithm can be used in several different modes, which includes an integral driven search and a coefficient driven search. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques, we present ASCI results applied to a large range of systems and basis sets to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double- and triple-ζ benchmark data for the G1 data set. The largest of these calculations is Si2H6 which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package

Evgeny Epifanovsky, +238 more
TL;DR: The Q-Chem quantum chemistry program package as discussed by the authors provides a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, and methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques.
Journal ArticleDOI

CASSCF with Extremely Large Active Spaces Using the Adaptive Sampling Configuration Interaction Method

TL;DR: In this article, the adaptive sampling configuration interaction (ASCI) method is used as an approximate full active space self-consistent field solver in the active space to solve the orbital optimization problem.
Journal ArticleDOI

Iterative Configuration Interaction with Selection

TL;DR: The iCIPT2 as discussed by the authors algorithm is based on the Epstein-Nesbet second-order perturbation theory (PT2) and is shown to achieve state-of-the-art performance on the C2, O2, Cr2 and C6H6.
Journal ArticleDOI

The Variational Quantum Eigensolver: A review of methods and best practices

- 01 Nov 2022 - 
TL;DR: The variational quantum eigensolver (or VQE) as mentioned in this paper was proposed to compute the ground state energy of a Hamiltonian, a problem that is central to quantum chemistry and condensed matter physics.
References
More filters
Journal ArticleDOI

A fifth-order perturbation comparison of electron correlation theories

TL;DR: In this paper, a new augmented version of coupled-cluster theory, denoted as CCSD(T), is proposed to remedy some of the deficiencies of previous augmented coupledcluster models.
Journal ArticleDOI

Density-matrix algorithms for quantum renormalization groups.

TL;DR: A formulation of numerical real-space renormalization groups for quantum many-body problems is presented and several algorithms utilizing this formulation are outlined, which can be applied to almost any one-dimensional quantum lattice system, and can provide a wide variety of static properties.
Journal ArticleDOI

Advances in molecular quantum chemistry contained in the Q-Chem 4 program package

Yihan Shao, +156 more
- 17 Jan 2015 - 
TL;DR: A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided in this paper, covering approximately the last seven years, including developments in density functional theory and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces.
Journal ArticleDOI

The density-matrix renormalization group

TL;DR: The density-matrix renormalization group (DMRG) as mentioned in this paper is a numerical algorithm for the efficient truncation of the Hilbert space of low-dimensional strongly correlated quantum systems based on a rather general decimation prescription.
Related Papers (5)