scispace - formally typeset
Search or ask a question
Book

Modern control engineering

01 Jan 1970-
TL;DR: This comprehensive treatment of the analysis and design of continuous-time control systems provides a gradual development of control theory and shows how to solve all computational problems with MATLAB.
Abstract: From the Publisher: This comprehensive treatment of the analysis and design of continuous-time control systems provides a gradual development of control theory—and shows how to solve all computational problems with MATLAB. It avoids highly mathematical arguments, and features an abundance of examples and worked problems throughout the book. Chapter topics include the Laplace transform; mathematical modeling of mechanical systems, electrical systems, fluid systems, and thermal systems; transient and steady-state-response analyses, root-locus analysis and control systems design by the root-locus method; frequency-response analysis and control systems design by the frequency-response; two-degrees-of-freedom control; state space analysis of control systems and design of control systems in state space.
Citations
More filters
Journal ArticleDOI
TL;DR: A novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection, and develops a novel learning method (P-N learning) which estimates the errors by a pair of “experts”: P-expert estimates missed detections, and N-ex Expert estimates false alarms.
Abstract: This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and extent in a single frame. In every frame that follows, the task is to determine the object's location and extent or indicate that the object is not present. We propose a novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so far and corrects the tracker if necessary. The learning estimates the detector's errors and updates it to avoid these errors in the future. We study how to identify the detector's errors and learn from them. We develop a novel learning method (P-N learning) which estimates the errors by a pair of “experts”: (1) P-expert estimates missed detections, and (2) N-expert estimates false alarms. The learning process is modeled as a discrete dynamical system and the conditions under which the learning guarantees improvement are found. We describe our real-time implementation of the TLD framework and the P-N learning. We carry out an extensive quantitative evaluation which shows a significant improvement over state-of-the-art approaches.

3,137 citations

Journal ArticleDOI
TL;DR: The basic construct of control theory is presented—the discrepancy-reducing feedback loop—and certain of its implications for theory in three separate areas of human psychology are discussed, demonstrating the breadth of its applicability.
Abstract: Control theory provides a model of self-regulati on that we believe is useful in the analysis of human behavior. As an illustration of the breadth of its applicability, we present the basic construct of control theory—the discrepancy-reducing feedback loop—and discuss certain of its implications for theory in three separate areas of human psychology. In personality-s ocial, clinical, and health psychology, the construct proves to fit well with known phenomena and with the theories most recently developed to account for the phenomena. Moreover, in each case control theory appears to make a distinct and unique contribution to the state of the area. We conclude by noting the integrative potential that is suggested by these illustrations and by noting some issues that should receive attention in future work. Cybernetic or control theory is a general approach to the understanding of self-regulating systems. Its central ideas have been around for a long time (see, for example, Cannon's 1929, 1932, discussion of homeostatic physiological mechanisms), but its birth as a distinct body of thought is usually traced to the publication of Wiener's (1948) book, Cybernetics: Control and communication in the animal and the machine. Since then, control theory (in various forms) has had a major impact on areas of work as diverse as engineering (e.g., Dransfield, 1968; Ogata, 1970), applied mathematics (e.g.,

2,292 citations

Book
13 Apr 2000
TL;DR: In this paper, the authors discuss the application of metal cutting to manufacturing problems, including the design of real-time trajectory generation and interpolation algorithms, and CNC-oriented error analysis.
Abstract: Metal cutting is a widely used method of producing manufactured products. The technology of metal cutting has advanced considerably along with new materials, computers, and sensors. This new edition treats the scientific principles of metal cutting and their practical application to manufacturing problems. It begins with metal cutting mechanics, principles of vibration, and experimental modal analysis applied to solving shop floor problems. Notable is the in-depth coverage of chatter vibrations, a problem experienced daily by manufacturing engineers. The essential topics of programming, design, and automation of CNC (computer numerical control) machine tools, NC (numerical control) programming, and CAD/CAM technology are discussed. The text also covers the selection of drive actuators, feedback sensors, modeling and control of feed drives, the design of real time trajectory generation and interpolation algorithms, and CNC-oriented error analysis in detail. Each chapter includes examples drawn from industry, design projects, and homework problems. This book is ideal for advanced undergraduate and graduate students, as well as practicing engineers.

1,854 citations

Journal ArticleDOI
TL;DR: In this paper, the minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known, and the optimal open-loop torques are found, and a method is given for implementing these torques with a conventional linear feedback control system.
Abstract: The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. The optimal open-loop torques are found, and a method is given for implementing these torques with a conventional linear feedback control system. The algorithm allows bounds on the torques that may be arbitrary functions of the joint angles and angular velocities. This method is valid for any path and orientation of the end- effector that is specified. The algorithm can be used for any manipulator that has rigid links, known dynamic equations of motion, and joint angles that can be determined at a given position on the path.

1,321 citations

Proceedings ArticleDOI
03 Dec 2003
TL;DR: A solution by which the circuit can be operated even below the ‘critical’ voltage, so that no margins are required and thus more energy can be saved.
Abstract: With increasing clock frequencies and silicon integration, power aware computing has become a critical concern in the design of embedded processors and systems-on-chip. One of the more effective and widely used methods for power-aware computing is dynamic voltage scaling (DVS). In order to obtain the maximum power savings from DVS, it is essential to scale the supply voltage as low as possible while ensuring correct operation of the processor. The critical voltage is chosen such that under a worst-case scenario of process and environmental variations, the processor always operates correctly. However, this approach leads to a very conservative supply voltage since such a worst-case combination of different variabilities is very rare. In this paper, we propose a new approach to DVS, called Razor, based on dynamic detection and correction of circuit timing errors. The key idea of Razor is to tune the supply voltage by monitoring the error rate during circuit operation, thereby eliminating the need for voltage margins and exploiting the data dependence of circuit delay. A Razor flip-flop is introduced that double-samples pipeline stage values, once with a fast clock and again with a time-borrowing delayed clock. A metastability-tolerant comparator then validates latch values sampled with the fast clock. In the event of timing error, a modified pipeline mispeculation recovery mechanism restores correct program state. A prototype Razor pipeline was designed in a 0.18 /spl mu/m technology and was analyzed. Razor energy overhead during normal operation is limited to 3.1%. Analyses of a full-custom multiplier and a SPICE-level Kogge-Stone adder model reveal that substantial energy savings are possible for these devices (up to 64.2%) with little impact on performance due to error recovery (less than 3%).

1,137 citations