scispace - formally typeset
Search or ask a question
Book

Modern introduction to surface plasmons : theory, mathematica modeling, and applications

TL;DR: In this paper, the physics of localized and propagating surface plasmons on planar films, gratings, nanowires and nanoparticles is developed using both analytical and numerical techniques.
Abstract: Introducing graduate students in physics, optics, materials science and electrical engineering to surface plasmons, this book also covers guided modes at planar interfaces of metamaterials with negative refractive index. The physics of localized and propagating surface plasmons, on planar films, gratings, nanowires and nanoparticles, is developed using both analytical and numerical techniques. Guided modes at the interfaces between materials with any combination of positive or negative permittivity and permeability are analyzed in a systematic manner. Applications of surface plasmon physics are described, including near-field transducers in heat-assisted magnetic recording and biosensors. Resources at www.cambridge.org/9780521767170 include Mathematica code to generate figures from the book, color versions of many figures, and extended discussion of topics such as vector diffraction theory.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This review provides an introduction to fundamentals of PEF, illustrates current developments in design of metallic nanostructures for efficient fluorescence signal amplification that utilizes propagating and localized surface plasmons, and summarizes current implementations to biosensors for detection of trace amounts of biomarkers, toxins, and pathogens that are relevant to medical diagnostics and food control.
Abstract: Surfaces of metallic films and metallic nanoparticles can strongly confine electromagnetic field through its coupling to propagating or localized surface plasmons. This interaction is associated with large enhancement of the field intensity and local optical density of states which provides means to increase excitation rate, raise quantum yield, and control far field angular distribution of fluorescence light emitted by organic dyes and quantum dots. Such emitters are commonly used as labels in assays for detection of chemical and biological species. Their interaction with surface plasmons allows amplifying fluorescence signal (brightness) that accompanies molecular binding events by several orders of magnitude. In conjunction with interfacial architectures for the specific capture of target analyte on a metallic surface, plasmon-enhanced fluorescence (PEF) that is also referred to as metal-enhanced fluorescence (MEF) represents an attractive method for shortening detection times and increasing sensitivity of various fluorescence-based analytical technologies. This review provides an introduction to fundamentals of PEF, illustrates current developments in design of metallic nanostructures for efficient fluorescence signal amplification that utilizes propagating and localized surface plasmons, and summarizes current implementations to biosensors for detection of trace amounts of biomarkers, toxins, and pathogens that are relevant to medical diagnostics and food control.

370 citations

Journal ArticleDOI
TL;DR: This work reviewed SPR, localized surface plasmon resonance (LSPR), and large-scale plAsmonic arrays, an enabling optical technology with applications in disease monitoring, diagnostics, homeland security, food safety, and biological imaging applications.
Abstract: Demand for accessible and affordable healthcare for infectious and chronic diseases present significant challenges for providing high-value and effective healthcare. Traditional approaches are expanding to include point-of-care (POC) diagnostics, bedside testing, and community-based approaches to respond to these challenges.1 Innovative solutions utilizing recent advances in mobile technologies, nanotechnology, imaging systems, and microfluidic technologies are envisioned to assist this transformation. Infectious diseases have considerable economic and societal impact on developing settings. For instance, malaria is observed more commonly in sub-Saharan Africa and India.2 The societal impact of acquired immune deficiency syndrome (AIDS) and tuberculosis is high, through targeting adults in villages and leaving behind declining populations.3 In resource-constrained settings, it is estimated that about 32% of the disease burden is from communicable diseases such as respiratory infections, AIDS, and malaria, while 43% of the burden is from noncommunicable diseases, such as cardiovascular diseases, neuropsychiatric conditions, and cancer.4 Developing diagnostic platforms that are affordable, robust, and rapid-targeting infectious diseases is one of the top priorities for improving healthcare delivery in the developing world.5 The early detection and monitoring of infectious diseases and cancer through affordable and accessible healthcare will significantly reduce the disease burden and help preserve the social fabric of these communities. Further, improved diagnostics and disease monitoring technologies have potential to enhance foreign investment, trade, and mobility in the developing countries.6 Highly sensitive and specific lab assays such as cell culture methods, polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA) are available for diagnosis of infectious diseases in the developed world. They require sample transportation, manual preparation steps, and skilled and well-trained technicians. These clinical conventional methods provide results in several hours to days, precluding rapid detection and response at the primary care settings. Another diagnostic challenge is identifying multiple pathogens. Since common symptoms like sore throat and fever can be caused by multiple infectious agents (e.g., bacteria and viruses), it is important to accurately identify the responsible agent for targeted treatment. Therefore, high-throughput sensors for multiplexed identification would help improve patient care.7 Medical instruments in centrally located institutions in the developed world rely on uninterrupted electricity and running water and require controlled environmental conditions. It may not be viable to satisfy some of these criteria in some POC settings, where well-trained healthcare personnel are not available and clean water access is unreliable.7,8 Further, in remote settings without infrastructure, rain and dust can act as contaminants.7 Diagnostic devices for POC testing in these settings are identified by the World Health Organization to be affordable, sensitive, user-friendly, specific to biological agents, and providing rapid response to small sample volumes.9 Optical biosensor devices are emerging as powerful biologic agent detection platforms satisfying these considerations.10 Optical sensing platforms employ various methods, including refractive index change monitoring, absorption, and spectroscopic-based measurements.11 Optical sensors that are based on refractive index monitoring cover a range of technologies, including photonic crystal fibers, nano/microring resonator structures, interferometric devices, plasmonic nano/micro arrays, and surface plasmon resonance (SPR)-based platforms.11,12 The latter two are plasmonic-based technologies. Plasmonics is an enabling optical technology with applications in disease monitoring, diagnostics, homeland security, food safety, and biological imaging applications. The plasmonic-based biosensor platforms along with the underlying technologies are illustrated in the Figure ​Figure1.1. Here, we reviewed SPR, localized surface plasmon resonance (LSPR), and large-scale plasmonic arrays (e.g., nanohole arrays). Figure 1 Plasmonic-based technologies for versatile biosensor applications. SPR stands for surface plasmon resonance, LSPR for localized surface plasmon resonance, SPRi for surface plasmon resonance imaging, and SERS for surface-enhanced Raman scattering.

312 citations

01 Apr 2014
TL;DR: In this article, the authors present a review of the plasmonic-based platforms for point-of-care (POC) diagnostics, bedside testing, and community-based approaches to respond to these challenges.
Abstract: Demand for accessible and affordable healthcare for infectious and chronic diseases present significant challenges for providing high-value and effective healthcare. Traditional approaches are expanding to include point-of-care (POC) diagnostics, bedside testing, and community-based approaches to respond to these challenges.1 Innovative solutions utilizing recent advances in mobile technologies, nanotechnology, imaging systems, and microfluidic technologies are envisioned to assist this transformation. Infectious diseases have considerable economic and societal impact on developing settings. For instance, malaria is observed more commonly in sub-Saharan Africa and India.2 The societal impact of acquired immune deficiency syndrome (AIDS) and tuberculosis is high, through targeting adults in villages and leaving behind declining populations.3 In resource-constrained settings, it is estimated that about 32% of the disease burden is from communicable diseases such as respiratory infections, AIDS, and malaria, while 43% of the burden is from noncommunicable diseases, such as cardiovascular diseases, neuropsychiatric conditions, and cancer.4 Developing diagnostic platforms that are affordable, robust, and rapid-targeting infectious diseases is one of the top priorities for improving healthcare delivery in the developing world.5 The early detection and monitoring of infectious diseases and cancer through affordable and accessible healthcare will significantly reduce the disease burden and help preserve the social fabric of these communities. Further, improved diagnostics and disease monitoring technologies have potential to enhance foreign investment, trade, and mobility in the developing countries.6 Highly sensitive and specific lab assays such as cell culture methods, polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA) are available for diagnosis of infectious diseases in the developed world. They require sample transportation, manual preparation steps, and skilled and well-trained technicians. These clinical conventional methods provide results in several hours to days, precluding rapid detection and response at the primary care settings. Another diagnostic challenge is identifying multiple pathogens. Since common symptoms like sore throat and fever can be caused by multiple infectious agents (e.g., bacteria and viruses), it is important to accurately identify the responsible agent for targeted treatment. Therefore, high-throughput sensors for multiplexed identification would help improve patient care.7 Medical instruments in centrally located institutions in the developed world rely on uninterrupted electricity and running water and require controlled environmental conditions. It may not be viable to satisfy some of these criteria in some POC settings, where well-trained healthcare personnel are not available and clean water access is unreliable.7,8 Further, in remote settings without infrastructure, rain and dust can act as contaminants.7 Diagnostic devices for POC testing in these settings are identified by the World Health Organization to be affordable, sensitive, user-friendly, specific to biological agents, and providing rapid response to small sample volumes.9 Optical biosensor devices are emerging as powerful biologic agent detection platforms satisfying these considerations.10 Optical sensing platforms employ various methods, including refractive index change monitoring, absorption, and spectroscopic-based measurements.11 Optical sensors that are based on refractive index monitoring cover a range of technologies, including photonic crystal fibers, nano/microring resonator structures, interferometric devices, plasmonic nano/micro arrays, and surface plasmon resonance (SPR)-based platforms.11,12 The latter two are plasmonic-based technologies. Plasmonics is an enabling optical technology with applications in disease monitoring, diagnostics, homeland security, food safety, and biological imaging applications. The plasmonic-based biosensor platforms along with the underlying technologies are illustrated in the Figure ​Figure1.1. Here, we reviewed SPR, localized surface plasmon resonance (LSPR), and large-scale plasmonic arrays (e.g., nanohole arrays). Figure 1 Plasmonic-based technologies for versatile biosensor applications. SPR stands for surface plasmon resonance, LSPR for localized surface plasmon resonance, SPRi for surface plasmon resonance imaging, and SERS for surface-enhanced Raman scattering.

270 citations

Journal ArticleDOI
TL;DR: Graphene has attracted great interest since it was successfully exfoliated in 2004 as mentioned in this paper, and its two dimensional nature and superior properties meet the need of surface plasmons and greatly enrich the field of plasmonics.
Abstract: Owing to its excellent electrical, mechanical, thermal and optical properties, graphene has attracted great interests since it was successfully exfoliated in 2004. Its two dimensional nature and superior properties meet the need of surface plasmons and greatly enrich the field of plasmonics. Recent progress and applications of graphene plasmonics will be reviewed, including the theoretical mechanisms, experimental observations, and meaningful applications. With relatively low loss, high confinement, flexible feature, and good tunability, graphene can be a promising plasmonic material alternative to the noble metals. Optics transformation, plasmonic metamaterials, light harvesting etc. are realized in graphene based devices, which are useful for applications in electronics, optics, energy storage, THz technology and so on. Moreover, the fine biocompatibility of graphene makes it a very well candidate for applications in biotechnology and medical science.

268 citations


Cites background from "Modern introduction to surface plas..."

  • ... electron oscillations can propagate along the surface of the plasmonic materials [21]. Coupled with electrons, photons or phonons, SPs have promising applications in engineering and applied sciences [23, 24]. Thanks to plasmonics, many bottlenecks are broken such as nanophotonics [25,26], metamaterials [27], photovoltaic devices [28], sensors [29] and so on. These EM waves can be excited in the conventio...

    [...]

Journal ArticleDOI
TL;DR: Graphene has attracted great interest since it was successfully exfoliated in 2004 as mentioned in this paper, and its two dimensional nature and superior properties meet the need of surface plasmons and greatly enrich the field of plasmonics.
Abstract: Owing to its excellent electrical, mechanical, thermal and optical properties, graphene has attracted great interests since it was successfully exfoliated in 2004. Its two dimensional nature and superior properties meet the need of surface plasmons and greatly enrich the field of plasmonics. Recent progress and applications of graphene plasmonics will be reviewed, including the theoretical mechanisms, experimental observations, and meaningful applications. With relatively low loss, high confinement, flexible feature, and good tunability, graphene can be a promising plasmonic material alternative to the noble metals. Optics transformation, plasmonic metamaterials, light harvesting etc. are realized in graphene based devices, which are useful for applications in electronics, optics, energy storage, THz technology and so on. Moreover, the fine biocompatibility of graphene makes it a very well candidate for applications in biotechnology and medical science.

256 citations