scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Modern Theoretical Approaches to Modeling the Excited-State Intramolecular Proton Transfer: An Overview.

25 Aug 2021-Molecules (Multidisciplinary Digital Publishing Institute)-Vol. 26, Iss: 17, pp 5140
TL;DR: In this paper, the authors summarize the state-of-the-art quantum-chemical methods, as well as molecular- and quantum-dynamics tools successfully applied in ESIPT process studies, focusing on a critical comparison of their specific properties.
Abstract: The excited-state intramolecular proton transfer (ESIPT) phenomenon is nowadays widely acknowledged to play a crucial role in many photobiological and photochemical processes. It is an extremely fast transformation, often taking place at sub-100 fs timescales. While its experimental characterization can be highly challenging, a rich manifold of theoretical approaches at different levels is nowadays available to support and guide experimental investigations. In this perspective, we summarize the state-of-the-art quantum-chemical methods, as well as molecular- and quantum-dynamics tools successfully applied in ESIPT process studies, focusing on a critical comparison of their specific properties.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , a brief overview on the exploitation of ESIPT luminescence for the optimization of dual-state emissive (DSE) dyes properties is presented, where a synergistic approach between organic synthesis and ab initio calculations has proven to be an efficient tool for the construction and optimization of DSE-ESIPT fluorophores.
Abstract: Dual-state emissive (DSE) fluorophores are organic dyes displaying fluorescence emission both in dilute and concentrated solution and in the solid-state, as amorphous, single crystal, polycrystalline samples or thin films. This comes in contrast to the vast majority of organic fluorescent dyes which typically show intense fluorescence in solution but are quenched in concentrated media and in the solid-state owing to π-stacking interactions; a well-known phenomenon called aggregation-caused quenching (ACQ). On the contrary, molecular rotors with a significant number of free rotations have been engineered to show quenched emission in solution but strong fluorescence in the aggregated-state thanks to restriction of the intramolecular motions. This is the concept of aggregation-induced emission (AIE). DSE fluorophores have been far less explored despite the fact that they are at the crossroad of ACQ and AIE phenomena and allow targeting applications both in solution (bio-conjugation, sensing, imaging) and solid-state (organic electronics, data encryption, lasing, luminescent displays). Excited-State Intramolecular Proton Transfer (ESIPT) fluorescence is particularly suitable to engineer DSE dyes. Indeed, ESIPT fluorescence, which relies on a phototautomerism between normal and tautomeric species, is characterized by a strong emission in the solid-state along with a large Stokes’ shift, an enhanced photostability and a strong sensitivity to the close environment, a feature prone to be used in bio-sensing. A drawback that needs to be overcome is their weak emission intensity in solution, owing to detrimental molecular motions in the excited-state. Several strategies have been proposed in that regard. In the past few years, a growing number of examples of DSE-ESIPT dyes have indeed emerged in the literature, enriching the database of such attractive dyes. This review aims at a brief but concise overview on the exploitation of ESIPT luminescence for the optimization of DSE dyes properties. In that perspective, a synergistic approach between organic synthesis, fluorescence spectroscopy and ab initio calculations has proven to be an efficient tool for the construction and optimization of DSE-ESIPT fluorophores.

30 citations

Journal ArticleDOI
TL;DR: In this article, the atomic mechanisms responsible for nonradiative electron-hole recombination in orthorhombic-, tetragonal-, and cubic MAPbI3 were established.
Abstract: Solar cells and optoelectronic devices are exposed to heat that degrades performance. Therefore, elucidating temperature-dependent charge carrier dynamics is essential for device optimization. Charge carrier lifetimes decrease with temperature in conventional semiconductors. The opposite, anomalous trend is observed in some experiments performed with MAPbI3 (MA = CH3NH3+) and other metal halide perovskites. Using ab initio quantum dynamics simulation, we establish the atomic mechanisms responsible for nonradiative electron-hole recombination in orthorhombic-, tetragonal-, and cubic MAPbI3. We demonstrate that structural disorder arising from the phase transitions is as important as the disorder due to heating in the same phase. The carrier lifetimes grow both with increasing temperature in the same phase and upon transition to the higher-temperature phases. The increased lifetime is rationalized by structural disorder that induces partial charge localization, decreases nonadiabatic coupling, and shortens quantum coherence. Inelastic and elastic electron-vibrational interactions exhibit opposite dependence on temperature and phase. The partial disorder and localization arise from thermal motions of both the inorganic lattice and the organic cations and depend significantly on the phase. The structural deformations induced by thermal fluctuations and phase transitions are on the same order as deformations induced by defects, and hence, thermal disorder plays a very important role. Since charge localization increases carrier lifetimes but inhibits transport, an optimal regime maximizing carrier diffusion can be designed, depending on phase, temperature, material morphology, and device architecture. The atomistic mechanisms responsible for the enhanced carrier lifetimes at elevated temperatures provide guidelines for the design of improved solar energy and optoelectronic materials.

17 citations

Journal ArticleDOI
TL;DR: In this paper , the authors demonstrate that midgap defect levels can exhibit very large and slow energy fluctuations associated with anharmonic acoustic motions, which can be precursors to chemical decomposition, a known problem with metal halide perovskites.
Abstract: Metal halide perovskites (MHPs) have gained considerable attention due to their excellent optoelectronic performance, which is often attributed to unusual defect properties. We demonstrate that midgap defect levels can exhibit very large and slow energy fluctuations associated with anharmonic acoustic motions. Therefore, care should be taken classifying MHP defects as deep or shallow, since shallow defects may become deep and vice versa. As a consequence, charges from deep levels can escape into bands, and light absorption can be extended to longer wavelengths, improving material performance. The phenomenon, demonstrated with iodine vacancy in CH3NH3PbI3 using a machine learning force field, can be expected for a variety of defects and dopants in many MHPs and other soft inorganic semiconductors. Since large-scale anharmonic motions can be precursors to chemical decomposition, a known problem with MHPs, we propose that materials that are stiffer than MHPs but softer than traditional inorganic semiconductors, such as Si and TiO2, may simultaneously exhibit excellent performance and stability.

11 citations

Journal ArticleDOI
TL;DR: In this paper , the ground state tautomerism and excited state intramolecular proton transfer in two new molecular switches, namely N-(benzo[d]thiazol-2-yl)picolinamide and N-(bzothiazol 2-yl)-indicotinamide, were studied in acetonitrile by the combined use of steady state and time dependent spectroscopy and DFT calculations.

5 citations

Journal ArticleDOI
TL;DR: In this paper , the photophysical properties of a series of original 2-(2′-hydroxyphenyl)pyrimidines were thoroughly studied and the key role of the OH group in the emission quenching was demonstrated by the preparation of 2′-unsubstituted derivatives, all of which exhibited violet or blue luminescence.
Abstract: The development of fluorescence materials with switched on/off emission has attracted great attention owing to the potential application of these materials in chemical sensing. In this work, the photophysical properties of a series of original 2-(2′-hydroxyphenyl)pyrimidines were thoroughly studied. The compounds were prepared by following well-established and straightforward methodologies and showed very little or null photoluminescence both in solution and in the solid state. This absence of emission can be explained by a fast proton transfer from the OH group to the nitrogen atoms of the pyrimidine ring to yield an excited tautomer that deactivates through a nonradiative pathway. The key role of the OH group in the emission quenching was demonstrated by the preparation of 2′-unsubstituted derivatives, all of which exhibited violet or blue luminescence. Single crystals of some compounds suitable for an X-ray diffraction analysis could be obtained, which permitted us to investigate inter- and intramolecular interactions and molecular packing structures. The protonation of the pyrimidine ring by an addition of trifluoroacetic acid inhibited the excited-state intramolecular proton transfer (ESIPT) process, causing a reversible switch on fluorescence response detectable by the naked eye. This acidochromic behavior allows 2-(2′-hydroxyphenyl)pyrimidines to be used as solid-state acid–base vapor sensors and anticounterfeiting agents. Extensive density functional theory and its time-dependent counterpart calculations at the M06-2X/6-31+G** level of theory were performed to rationalize all the experimental results and understand the impact of protonation on the different optical transitions.

5 citations

References
More filters
Journal ArticleDOI
TL;DR: Numerical calculations on a number of atoms, positive ions, and molecules, of both open- and closed-shell type, show that density-functional formulas for the correlation energy and correlation potential give correlation energies within a few percent.
Abstract: A correlation-energy formula due to Colle and Salvetti [Theor. Chim. Acta 37, 329 (1975)], in which the correlation energy density is expressed in terms of the electron density and a Laplacian of the second-order Hartree-Fock density matrix, is restated as a formula involving the density and local kinetic-energy density. On insertion of gradient expansions for the local kinetic-energy density, density-functional formulas for the correlation energy and correlation potential are then obtained. Through numerical calculations on a number of atoms, positive ions, and molecules, of both open- and closed-shell type, it is demonstrated that these formulas, like the original Colle-Salvetti formulas, give correlation energies within a few percent.

84,646 citations

Journal ArticleDOI
TL;DR: The revised DFT-D method is proposed as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
Abstract: The method of dispersion correction as an add-on to standard Kohn-Sham density functional theory (DFT-D) has been refined regarding higher accuracy, broader range of applicability, and less empiricism. The main new ingredients are atom-pairwise specific dispersion coefficients and cutoff radii that are both computed from first principles. The coefficients for new eighth-order dispersion terms are computed using established recursion relations. System (geometry) dependent information is used for the first time in a DFT-D type approach by employing the new concept of fractional coordination numbers (CN). They are used to interpolate between dispersion coefficients of atoms in different chemical environments. The method only requires adjustment of two global parameters for each density functional, is asymptotically exact for a gas of weakly interacting neutral atoms, and easily allows the computation of atomic forces. Three-body nonadditivity terms are considered. The method has been assessed on standard benchmark sets for inter- and intramolecular noncovalent interactions with a particular emphasis on a consistent description of light and heavy element systems. The mean absolute deviations for the S22 benchmark set of noncovalent interactions for 11 standard density functionals decrease by 15%-40% compared to the previous (already accurate) DFT-D version. Spectacular improvements are found for a tripeptide-folding model and all tested metallic systems. The rectification of the long-range behavior and the use of more accurate C(6) coefficients also lead to a much better description of large (infinite) systems as shown for graphene sheets and the adsorption of benzene on an Ag(111) surface. For graphene it is found that the inclusion of three-body terms substantially (by about 10%) weakens the interlayer binding. We propose the revised DFT-D method as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.

32,589 citations

Journal ArticleDOI
TL;DR: The SMD model may be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space, including, for example, the conductor-like screening algorithm.
Abstract: We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the “D” stands for “density” to denote that the full solute electron density is used without defining partial atomic charges. “Continuum” denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute−solvent boundary. SMD is a universal solvation model, where “universal” denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonho...

10,945 citations

Journal ArticleDOI
TL;DR: The re-optimization of a recently proposed long-range corrected hybrid density functional, omegaB97X-D, to include empirical atom-atom dispersion corrections yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions.
Abstract: We report re-optimization of a recently proposed long-range corrected (LC) hybrid density functional [J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2008, 128, 084106] to include empirical atom–atom dispersion corrections. The resulting functional, ωB97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent systems, ωB97X-D shows slight improvement over other empirical dispersion-corrected density functionals, while for covalent systems and kinetics it performs noticeably better. Relative to our previous functionals, such as ωB97X, the new functional is significantly superior for non-bonded interactions, and very similar in performance for bonded interactions.

9,184 citations

Journal ArticleDOI
TL;DR: This work focuses on the calculations of vibrational spectra, thermodynamic quantities, isotopic substitution effects, and force constants in a fully integrated program for the study of chemical reactions involving molecules, ions, and linear polymers using MOPAC.
Abstract: Before we start, we need a working definition for MOPAC. The following description has been used many times to describe MOPAC: MOPAC is a general-purpose, semiempirical molecular orbital program for the study of chemical reactions involving molecules, ions, and linear polymers. It implements the semiempirical Hamiltonians MNDO, AM 1, MINDO/3, and MNDOPM3, and combir_es the calculations of vibrational spectra, thermodynamic quantities, isotopic substitution effects, and force constants in a fully integrated program. Elements parameterized at the MNDO level include H, Li, Be, B, C, N, O, F, A1, Si, P, S, C1, Ge, Br, Sn, Hg, Pb, and I; at the PM3 level the elements H, C, N, O, F, A1, Si, P, S, C1, Br, and I are available. Within the electronic part of the calculation, molecular and localized orbitals, excited states up to sextets, chemical bond indices, charges, etc. are computed. Both intrinsic and dynamic reaction coordinates can be calculated. A transition-state location routine and two transition-state optimizing routines are available for studying chemical reactions.

2,422 citations