scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Modernizing quantum annealing using local searches.

10 Feb 2017-New Journal of Physics (IOP Publishing)-Vol. 19, Iss: 2, pp 023024
TL;DR: In this article, the authors describe how real quantum annealers may be used to perform local (in state space) searches around specified states, rather than the global searches traditionally implemented in the QAA.
Abstract: I describe how real quantum annealers may be used to perform local (in state space) searches around specified states, rather than the global searches traditionally implemented in the quantum annealing algorithm (QAA). Such protocols will have numerous advantages over simple quantum annealing. By using such searches the effect of problem mis-specification can be reduced, as only energy differences between the searched states will be relevant. The QAA is an analogue of simulated annealing, a classical numerical technique which has now been superseded. Hence, I explore two strategies to use an annealer in a way which takes advantage of modern classical optimization algorithms. Specifically, I show how sequential calls to quantum annealers can be used to construct analogues of population annealing and parallel tempering which use quantum searches as subroutines. The techniques given here can be applied not only to optimization, but also to sampling. I examine the feasibility of these protocols on real devices and note that implementing such protocols should require minimal if any change to the current design of the flux qubit-based annealers by D-Wave Systems Inc. I further provide proof-of-principle numerical experiments based on quantum Monte Carlo that demonstrate simple examples of the discussed techniques.
Citations
More filters
Journal ArticleDOI
06 Mar 2018-Nature
TL;DR: A large-scale programmable quantum simulation is described, using a D-Wave quantum processor to simulate a two-dimensional magnetic lattice in the vicinity of a topological phase transition.
Abstract: The work of Berezinskii, Kosterlitz and Thouless in the 1970s1,2 revealed exotic phases of matter governed by the topological properties of low-dimensional materials such as thin films of superfluids and superconductors. A hallmark of this phenomenon is the appearance and interaction of vortices and antivortices in an angular degree of freedom—typified by the classical XY model—owing to thermal fluctuations. In the two-dimensional Ising model this angular degree of freedom is absent in the classical case, but with the addition of a transverse field it can emerge from the interplay between frustration and quantum fluctuations. Consequently, a Kosterlitz–Thouless phase transition has been predicted in the quantum system—the two-dimensional transverse-field Ising model—by theory and simulation3–5. Here we demonstrate a large-scale quantum simulation of this phenomenon in a network of 1,800 in situ programmable superconducting niobium flux qubits whose pairwise couplings are arranged in a fully frustrated square-octagonal lattice. Essential to the critical behaviour, we observe the emergence of a complex order parameter with continuous rotational symmetry, and the onset of quasi-long-range order as the system approaches a critical temperature. We describe and use a simple approach to statistical estimation with an annealing-based quantum processor that performs Monte Carlo sampling in a chain of reverse quantum annealing protocols. Observations are consistent with classical simulations across a range of Hamiltonian parameters. We anticipate that our approach of using a quantum processor as a programmable magnetic lattice will find widespread use in the simulation and development of exotic materials.

307 citations

Journal ArticleDOI
TL;DR: In this paper, a hybrid quantum-classical solution method to the mean-variance portfolio optimization problems is investigated, and the best results in terms of expected time-to-solution as a function of number of variables for the hardest instances set are obtained by seeding the quantum annealer with a solution candidate found by a greedy local search.
Abstract: We investigate a hybrid quantum-classical solution method to the mean-variance portfolio optimization problems. Starting from real financial data statistics and following the principles of the Modern Portfolio Theory, we generate parametrized samples of portfolio optimization problems that can be related to quadratic binary optimization forms programmable in the analog D-Wave Quantum Annealer 2000Q. The instances are also solvable by an industry-established Genetic Algorithm approach, which we use as a classical benchmark. We investigate several options to run the quantum computation optimally, ultimately discovering that the best results in terms of expected time-to-solution as a function of number of variables for the hardest instances set are obtained by seeding the quantum annealer with a solution candidate found by a greedy local search and then performing a reverse annealing protocol. The optimized reverse annealing protocol is found to be more than 100 times faster than the corresponding forward quantum annealing on average.

118 citations

Journal ArticleDOI
TL;DR: Quantum annealing is a computing paradigm that has the ambitious goal of efficiently solving large-scale combinatorial optimization problems of practical importance as mentioned in this paper, however, many challenges have yet to be overcome before this goal can be reached.
Abstract: Quantum annealing is a computing paradigm that has the ambitious goal of efficiently solving large-scale combinatorial optimization problems of practical importance. However, many challenges have yet to be overcome before this goal can be reached. This perspectives article first gives a brief introduction to the concept of quantum annealing, and then highlights new pathways that may clear the way towards feasible and large scale quantum annealing. Moreover, since this field of research is to a strong degree driven by a synergy between experiment and theory, we discuss both in this work. An important focus in this article is on future perspectives, which complements other review articles, and which we hope will motivate further research.

117 citations

Journal ArticleDOI
TL;DR: Diabatic quantum annealing is argued for as the most promising route to quantum enhancement within this framework on the basis that improved coherence times and control capabilities will enable the near-term exploration of several heuristic quantum optimization algorithms that have been introduced in the literature.
Abstract: We assess the prospects for algorithms within the general framework of quantum annealing (QA) to achieve a quantum speedup relative to classical state of the art methods in combinatorial optimization and related sampling tasks. We argue for continued exploration and interest in the QA framework on the basis that improved coherence times and control capabilities will enable the near-term exploration of several heuristic quantum optimization algorithms that have been introduced in the literature. These continuous-time Hamiltonian computation algorithms rely on control protocols that are more advanced than those in traditional ground-state QA, while still being considerably simpler than those used in gate-model implementations. The inclusion of coherent diabatic transitions to excited states results in a generalization called diabatic quantum annealing (DQA), which we argue for as the most promising route to quantum enhancement within this framework. Other promising variants of traditional QA include reverse annealing and continuous-time quantum walks, as well as analog analogues of parameterized quantum circuit ansatzes for machine learning. Most of these algorithms have no known (or likely to be discovered) efficient classical simulations, and in many cases have promising (but limited) early signs for the possibility of quantum speedups, making them worthy of further investigation with quantum hardware in the intermediate-scale regime. We argue that all of these protocols can be explored in a state-of-the-art manner by embracing the full range of novel out-of-equilibrium quantum dynamics generated by time-dependent effective transverse-field Ising Hamiltonians that can be natively implemented by, e.g., inductively-coupled flux qubits, both existing and projected at application scale.

92 citations

Journal ArticleDOI
TL;DR: In this article, a mean-field theory of reverse annealing using the fully connected ferromagnetic $p$-spin model, with and without random longitudinal fields, is presented.
Abstract: Reverse annealing is a variant of quantum annealing that starts from a given classical configuration of spins (qubits). In contrast to the conventional formulation, where one starts from a uniform superposition of all possible states (classical configurations), quantum fluctuations are first increased and only then decreased. One then reads out the state as a proposed solution to the given combinatorial optimization problem. We formulate a mean-field theory of reverse annealing using the fully connected ferromagnetic $p$-spin model, with and without random longitudinal fields, and analyze it in order to understand how and when reverse annealing is effective at solving this problem. We find that the difficulty arising from the existence of a first-order quantum phase transition, which leads to an exponentially long computation time in conventional quantum annealing, is circumvented in the context of this particular problem by reverse annealing if the proximity of the initial state to the (known) solution exceeds a threshold. Even when a first-order transition is unavoidable, the difficulty is mitigated due to a smaller jump in the order parameter at a first-order transition, which implies a larger rate of quantum tunneling. Reverse annealing has not been studied analytically before, and this study paves the way toward a systematic understanding of this relatively unexplored protocol in a broader context.

90 citations

References
More filters
Journal ArticleDOI
28 Oct 1982-Nature
TL;DR: In this article, the linearity of quantum mechanics has been shown to prevent the replication of a photon of definite polarization in the presence of an excited atom, and the authors show that this conclusion holds for all quantum systems.
Abstract: If a photon of definite polarization encounters an excited atom, there is typically some nonvanishing probability that the atom will emit a second photon by stimulated emission. Such a photon is guaranteed to have the same polarization as the original photon. But is it possible by this or any other process to amplify a quantum state, that is, to produce several copies of a quantum system (the polarized photon in the present case) each having the same state as the original? If it were, the amplifying process could be used to ascertain the exact state of a quantum system: in the case of a photon, one could determine its polarization by first producing a beam of identically polarized copies and then measuring the Stokes parameters1. We show here that the linearity of quantum mechanics forbids such replication and that this conclusion holds for all quantum systems.

4,544 citations

Journal ArticleDOI
20 Apr 2001-Science
TL;DR: For the small examples that the authors could simulate, the quantum adiabatic algorithm worked well, providing evidence that quantum computers (if large ones can be built) may be able to outperform ordinary computers on hard sets of instances of NP-complete problems.
Abstract: A quantum system will stay near its instantaneous ground state if the Hamiltonian that governs its evolution varies slowly enough. This quantum adiabatic behavior is the basis of a new class of algorithms for quantum computing. We tested one such algorithm by applying it to randomly generated hard instances of an NP-complete problem. For the small examples that we could simulate, the quantum adiabatic algorithm worked well, providing evidence that quantum computers (if large ones can be built) may be able to outperform ordinary computers on hard sets of instances of NP-complete problems.

1,860 citations

Journal ArticleDOI
TL;DR: A new Monte Carlo method is presented for simulations of systems with quenched random interactions, allowing the investigation of lower temperatures with less computer time than previously necessary.
Abstract: A new Monte Carlo method is presented for simulations of systems with quenched random interactions. The approach greatly reduces the long correlation times characteristic of standard methods, allowing the investigation of lower temperatures with less computer time than previously necessary.

1,848 citations

Journal ArticleDOI
12 May 2011-Nature
TL;DR: This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples, and may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.
Abstract: Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. Johnson et al. use quantum annealing to find the ground state of an artificial Ising spin system comprised of an array of eight superconducting flux qubits with programmable spin–spin couplings. With an increased number of spins, the system may provide a practical physical means to implement quantum algorithms, possibly enabling more effective approaches towards solving certain classes of hard combinatorial optimization problems. Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult1. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing2,3. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem4,5. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems6,7,8,9,10,11,12. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin–spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration13,14. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.

1,593 citations

Journal ArticleDOI
TL;DR: A selected set of the many applications that have become possible with the introduction of parallel tempering are mentioned, and several promising avenues for future research are suggested.
Abstract: We review the history of the parallel tempering simulation method. From its origins in data analysis, the parallel tempering method has become a standard workhorse of physicochemical simulations. We discuss the theory behind the method and its various generalizations. We mention a selected set of the many applications that have become possible with the introduction of parallel tempering, and we suggest several promising avenues for future research.

1,255 citations