scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Modification of Gold Surfaces With Water-Soluble (Co)polymers Prepared Via Aqueous Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization

07 Jun 2003-Langmuir (American Chemical Society)-Vol. 19, Iss: 14, pp 5559-5562
TL;DR: In this paper, the authors reported the immobilization of poly(sodium 4-styrenesulfonate), poly((ar-vinylbenzyl) trimethylammonium chloride), poly(N,N-dimethylacrylamide), and poly(3-[2-(N-methylacrylido)-ethyldimethyl ammonio]propane sulfonate-b-N, N-dimethylamide) onto gold films.
Abstract: Reversible addition−fragmentation chain transfer (RAFT) is a versatile, controlled free radical polymerization technique that operates via a degenerative transfer mechanism in which a thiocarbonylthio compound acts as a chain transfer agent. The subsequent reduction of the dithioester end groups to thiols allows the preparation of (co)polymer-modified gold surfaces. Herein we report the immobilization of poly(sodium 4-styrenesulfonate), poly((ar-vinylbenzyl) trimethylammonium chloride), poly(N,N-dimethylacrylamide), and poly(3-[2-(N-methylacrylamido)-ethyldimethyl ammonio]propane sulfonate-b-N,N-dimethylacrylamide) onto gold films. The presence of the immobilized (co)polymers was confirmed by atomic force microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, and surface contact angle measurements. The gold film modified with the block copolymer demonstrated stimuli-responsive behavior as evidenced by its water contact angle being similar to that of poly(N,N-dimethylacrylamide) ...
Citations
More filters
Journal ArticleDOI
TL;DR: A review of living radical polymerization achieved with thiocarbonylthio compounds by a mechanism of reversible addition-fragmentation chain transfer (RAFT) is presented in this article.
Abstract: This paper presents a review of living radical polymerization achieved with thiocarbonylthio compounds [ZC(=S)SR] by a mechanism of reversible addition–fragmentation chain transfer (RAFT). Since we first introduced the technique in 1998, the number of papers and patents on the RAFT process has increased exponentially as the technique has proved to be one of the most versatile for the provision of polymers of well defined architecture. The factors influencing the effectiveness of RAFT agents and outcome of RAFT polymerization are detailed. With this insight, guidelines are presented on how to conduct RAFT and choose RAFT agents to achieve particular structures. A survey is provided of the current scope and applications of the RAFT process in the synthesis of well defined homo-, gradient, diblock, triblock, and star polymers, as well as more complex architectures including microgels and polymer brushes.

2,127 citations

Journal ArticleDOI
TL;DR: In this paper, a review highlights examples of recent applications of both the radical-mediated and base/nucleophile-initiated thiol-ene reactions in polymer and materials synthesis.

1,320 citations

Journal ArticleDOI
03 Mar 2008-Polymer
TL;DR: In this paper, a review of the development of addition-fragmentation chain transfer agents and related ring-opening monomers highlighting recent innovation in these areas is presented, including dithioesters, trithiocarbonates, dithioco-baramates and xanthates.

1,309 citations

Journal ArticleDOI
TL;DR: A review of the progress made in reversible addition-fragmentation chain transfer (RAFT) and macromolecular design via the interchange of xanthates (MADIX) polymerization can be found in this article.
Abstract: Among the living radical polymerization techniques, reversible addition–fragmentation chain transfer (RAFT) and macromolecular design via the interchange of xanthates (MADIX) polymerizations appear to be the most versatile processes in terms of the reaction conditions, the variety of monomers for which polymerization can be controlled, tolerance to functionalities, and the range of polymeric architectures that can be produced. This review highlights the progress made in RAFT/MADIX polymerization since the first report in 1998. It addresses, in turn, the mechanism and kinetics of the process, examines the various components of the system, including the synthesis paths of the thiocarbonyl-thio compounds used as chain-transfer agents, and the conditions of polymerization, and gives an account of the wide range of monomers that have been successfully polymerized to date, as well as the various polymeric architectures that have been produced. In the last section, this review describes the future challenges that the process will face and shows its opening to a wider scientific community as a synthetic tool for the production of functional macromolecules and materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:5347–5393, 2005

1,098 citations

Journal ArticleDOI
TL;DR: The control of molecular weight and molecular weight distribution has enabled access to complex architectures and site specific functionality that were previously impossible to achieve via traditional free radical polymerizations.
Abstract: A living radical polymerization (LRP) is a free radical polymerization that aims at displaying living character, (i.e., does not terminate or transfer and is able to continue polymerization once the initial feed is exhausted by addition of more monomer). However, termination reactions are inherent to a radical process, and modern LRP techniques seek to minimize such reactions, therefore providing control over the molecular weight and the molecular weight distribution of a polymeric material. In addition, the better LRP techniques incorporate many of the desirable features of traditional free radical polymerization, such as compatibility with a wide range of monomers, tolerance of many functionalities, and facile reaction conditions. The control of molecular weight and molecular weight distribution has enabled access to complex architectures and site specific functionality that were previously impossible to achieve via traditional free radical polymerizations. These LRPs are classified in three different subgroups: (1) stable free-radical polymerization such as nitroxide mediated polymerization (NMP),1,2 (2) degenerative transfer polymerization, such as iodine transfer polymerization (ITP and RITP),3,4 single electron transfer-degenerative transfer living radical polymerization(SET-DTLRP),5,6reversibleaddition-fragmentation chain transfer (RAFT),7,8 and macromolecular design via the interchange of xanthates (MADIX)9,10 polymerization, and (3) metal mediated catalyzed polymerization, such as atom transfer radical polymerization (ATRP),11-14 single electron transfer-living radical polymerization (SET-LRP),15 and organotellurium mediated living radical polymrization16-19 Among the existing LRP techniques, RAFT and MADIX are probably the most versatile processes, as they are tolerant * E-mail: T.P.D., T.Davis@UNSW.edu.au; S.P., S.Perrier@ chem.usyd.edu.au. † Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences & Engineering, UNSW. ‡ Centre for Advanced Macromolecular Design (CAMD), School of Biotechnology & Biomolecular Sciences, UNSW. § The University of Sydney. Chem. Rev. 2009, 109, 5402–5436 5402

858 citations

References
More filters
Journal ArticleDOI
TL;DR: Monolayers of alkanethiolates on gold are probably the most studied SAMs to date and offer the needed design flexibility, both at the individual molecular and at the material levels, and offer a vehicle for investigation of specific interactions at interfaces, and of the effect of increasing molecular complexity on the structure and stability of two-dimensional assemblies.
Abstract: The field of self-assembled monolayers (SAMs) has witnessed tremendous growth in synthetic sophistication and depth of characterization over the past 15 years.1 However, it is interesting to comment on the modest beginning and on important milestones. The field really began much earlier than is now recognized. In 1946 Zisman published the preparation of a monomolecular layer by adsorption (self-assembly) of a surfactant onto a clean metal surface.2 At that time, the potential of self-assembly was not recognized, and this publication initiated only a limited level of interest. Early work initiated in Kuhn’s laboratory at Gottingen, applying many years of experience in using chlorosilane derivative to hydrophobize glass, was followed by the more recent discovery, when Nuzzo and Allara showed that SAMs of alkanethiolates on gold can be prepared by adsorption of di-n-alkyl disulfides from dilute solutions.3 Getting away from the moisture-sensitive alkyl trichlorosilanes, as well as working with crystalline gold surfaces, were two important reasons for the success of these SAMs. Many self-assembly systems have since been investigated, but monolayers of alkanethiolates on gold are probably the most studied SAMs to date. The formation of monolayers by self-assembly of surfactant molecules at surfaces is one example of the general phenomena of self-assembly. In nature, self-assembly results in supermolecular hierarchical organizations of interlocking components that provides very complex systems.4 SAMs offer unique opportunities to increase fundamental understanding of self-organization, structure-property relationships, and interfacial phenomena. The ability to tailor both head and tail groups of the constituent molecules makes SAMs excellent systems for a more fundamental understanding of phenomena affected by competing intermolecular, molecular-substrates and molecule-solvent interactions like ordering and growth, wetting, adhesion, lubrication, and corrosion. That SAMs are well-defined and accessible makes them good model systems for studies of physical chemistry and statistical physics in two dimensions, and the crossover to three dimensions. SAMs provide the needed design flexibility, both at the individual molecular and at the material levels, and offer a vehicle for investigation of specific interactions at interfaces, and of the effect of increasing molecular complexity on the structure and stability of two-dimensional assemblies. These studies may eventually produce the design capabilities needed for assemblies of three-dimensional structures.5 However, this will require studies of more complex systems and the combination of what has been learned from SAMs with macromolecular science. The exponential growth in SAM research is a demonstration of the changes chemistry as a disciAbraham Ulman was born in Haifa, Israel, in 1946. He studied chemistry in the Bar-Ilan University in Ramat-Gan, Israel, and received his B.Sc. in 1969. He received his M.Sc. in phosphorus chemistry from Bar-Ilan University in 1971. After a brief period in industry, he moved to the Weizmann Institute in Rehovot, Israel, and received his Ph.D. in 1978 for work on heterosubstituted porphyrins. He then spent two years at Northwestern University in Evanston, IL, where his main interest was onedimensional organic conductors. In 1985 he joined the Corporate Research Laboratories of Eastman Kodak Company, in Rochester, NY, where his research interests were molecular design of materials for nonlinear optics and self-assembled monolayers. In 1994 he moved to Polytechnic University where he is the Alstadt-Lord-Mark Professor of Chemistry. His interests encompass self-assembled monolayers, surface engineering, polymers at interface, and surfaces phenomena. 1533 Chem. Rev. 1996, 96, 1533−1554

7,465 citations

Journal ArticleDOI
TL;DR: The authors proposed a reversible additive-fragmentation chain transfer (RAFT) method for living free-radical polymerization, which can be used with a wide range of monomers and reaction conditions and in each case it provides controlled molecular weight polymers with very narrow polydispersities.
Abstract: mechanism involves Reversible Addition-Fragmentation chain Transfer, and we have designated the process the RAFT polymerization. What distinguishes RAFT polymerization from all other methods of controlled/living free-radical polymerization is that it can be used with a wide range of monomers and reaction conditions and in each case it provides controlled molecular weight polymers with very narrow polydispersities (usually <1.2; sometimes <1.1). Living polymerization processes offer many benefits. These include the ability to control molecular weight and polydispersity and to prepare block copolymers and other polymers of complex architecturesmaterials which are not readily synthesized using other methodologies. Therefore, one can understand the current drive to develop a truly effective process which would combine the virtues of living polymerization with versatility and convenience of free-radical polymerization.2-4 However, existing processes described under the banner “living free-radical polymerization” suffer from a number of disadvantages. In particular, they may be applicable to only a limited range of monomers, require reagents that are expensive or difficult to remove, require special polymerization conditions (e.g. high reaction temperatures), and/or show sensitivity to acid or protic monomers. These factors have provided the impetus to search for new and better methods. There are three principal mechanisms that have been put forward to achieve living free-radical polymerization.2,5 The first is polymerization with reversible termination by coupling. Currently, the best example in this class is alkoxyamine-initiated or nitroxidemediated polymerization as first described by Rizzardo et al.6,7 and recently exploited by a number of groups in syntheses of narrow polydispersity polystyrene and related materials.4,8 The second mechanism is radical polymerization with reversible termination by ligand transfer to a metal complex (usually abbreviated as ATRP).9,10 This method has been successfully applied to the polymerization of various acrylic and styrenic monomers. The third mechanism for achieving living character is free-radical polymerization with reversible chain transfer (also termed degenerative chain transfer2). A simplified mechanism for this process is shown in

4,561 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used contact angles and optical ellipsometry to study the kinetics of adsorption of monolayer films and to examine the experimental conditions necessary for the formation of high-quality films.
Abstract: : Long-chain alkanethiols, HS(CH2)nX, adsorb from solution onto gold surfaces and form ordered, oriented monolayer films. The properties of the interfaces between the films and liquids are largely independent of chain length when n > 10; in particular, wetting is not directly influenced by the proximity of the underlying gold substrate. The specific interaction of gold with sulfur and other soft nucleophiles and its low reactivity toward most hard acids and bases make it possible to vary the structure of the terminal group, X, widely and thus permit the introduction of a great range of functional groups into a surface. Studies of wettability of these monolayers, and of their composition using X-ray photoelectron spectroscopy (XPS), indicate that the monolayers are oriented with the tail group, X, exposed at the monolayer-air or monolayer- liquid interface. The adsorption of simple n-alkanethiols generates hydrophobic surfaces whose free energy (19 mJ/sq. m) is the lowest of any hydrocarbon surface studied to date. Measurement of contact angles is a useful tool for studying the structure and chemistry of the outermost few angstroms of a surface. This work used contact angles and optical ellipsometry to study the kinetics of adsorption of monolayer films and to examine the experimental conditions necessary for the formation of high-quality films.

3,193 citations

Journal ArticleDOI
TL;DR: Biological surface science (BioSS) as discussed by the authors is a broad interdisciplinary area where properties and processes at interfaces between synthetic materials and biological environments are investigated and bio functional surfaces are fabricated.

1,123 citations

Journal ArticleDOI
17 Jan 2003-Science
TL;DR: The design of surfaces that exhibit dynamic changes in interfacial properties, such as wettability, in response to an electrical potential are reported, which enables amplification of molecular-level conformational transitions to macroscopic changes in surface properties without altering the chemical identity of the surface.
Abstract: We report the design of surfaces that exhibit dynamic changes in interfacial properties, such as wettability, in response to an electrical potential. The change in wetting behavior was caused by surface-confined, single-layered molecules undergoing conformational transitions between a hydrophilic and a moderately hydrophobic state. Reversible conformational transitions were confirmed at a molecular level with the use of sum-frequency generation spectroscopy and at a macroscopic level with the use of contact angle measurements. This type of surface design enables amplification of molecular-level conformational transitions to macroscopic changes in surface properties without altering the chemical identity of the surface. Such reversibly switching surfaces may open previously unknown opportunities in interfacial engineering.

1,055 citations