scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Modular Multilevel Converter With Different Submodule Concepts—Part I: Capacitor Voltage Balancing Method

TL;DR: A modulation strategy for the modular multilevel converter (MMC) which provides the voltage balancing of the capacitors of different submodules comprising the converter and is effective for arrangements with different submodule concepts.
Abstract: This paper presents a modulation strategy for the modular multilevel converter (MMC) which provides the voltage balancing of the capacitors of different submodules comprising the converter. Not only is this modulation applicable to MMCs constructed with classic two level (2L) submodules, but it is also effective for arrangements with different submodule concepts, for instance, topologies like neutral point clamped (NPC), flying capacitors (FCs), neutral point piloted (NPP), etc. Therefore, firstly, the general modulation philosophy is explained applied to the two level (2L) submodule concept, and secondly, the extension to 3L-NPC and 3L-FC submodule topologies is analyzed. After that, the validation of the studied modulation strategy is carried out by means of successful simulation results, at different switching frequencies and number of submodules. The corresponding experimental results are shown in Part II of this paper after having implemented the aforementioned modulation strategy in a real test bench. In addition to this, a comparison based on thermal analysis and sizing of elements among the four studied submodule topologies is also included.
Citations
More filters
Journal ArticleDOI
TL;DR: A general overview of the basics of operation of the MMC along with its control challenges are discussed, and a review of state-of-the-art control strategies and trends is presented as mentioned in this paper.
Abstract: The modular multilevel converter (MMC) has been a subject of increasing importance for medium/high-power energy conversion systems. Over the past few years, significant research has been done to address the technical challenges associated with the operation and control of the MMC. In this paper, a general overview of the basics of operation of the MMC along with its control challenges are discussed, and a review of state-of-the-art control strategies and trends is presented. Finally, the applications of the MMC and their challenges are highlighted.

1,765 citations


Cites background from "Modular Multilevel Converter With D..."

  • ...level neutral-point-clamped (NPC) or a three-level flying capacitor (FC) converter [17], [18]....

    [...]

Journal ArticleDOI
TL;DR: A review of the latest achievements of modular multilevel converters regarding the mentioned research topics, new applications, and future trends is presented in this article, where the authors present several attractive features such as a modular structure, the capability of transformer-less operation, easy scalability in terms of voltage and current, low expense for redundancy and fault tolerant operation, high availability, utilization of standard components, and excellent quality of the output waveforms.
Abstract: Modular multilevel converters have several attractive features such as a modular structure, the capability of transformer-less operation, easy scalability in terms of voltage and current, low expense for redundancy and fault tolerant operation, high availability, utilization of standard components, and excellent quality of the output waveforms. These features have increased the interest of industry and research in this topology, resulting in the development of new circuit configurations, converter models, control schemes, and modulation strategies. This paper presents a review of the latest achievements of modular multilevel converters regarding the mentioned research topics, new applications, and future trends.

1,123 citations


Cites background from "Modular Multilevel Converter With D..."

  • ...The efficiency of the cells can be improved, replacing the standard cell by multilevel structures, such as neutral point clamped or flying capacitor [18], as shown in Fig....

    [...]

Journal ArticleDOI
TL;DR: In this article, the principle of modularity is used to derive the different multilevel voltage and current source converter topologies for high-power dc systems, where the derived converter cells are treated as building blocks and are contributing to the modularity of the system.
Abstract: In this paper, the principle of modularity is used to derive the different multilevel voltage and current source converter topologies. The paper is primarily focused on high-power applications and specifically on high-voltage dc systems. The derived converter cells are treated as building blocks and are contributing to the modularity of the system. By combining the different building blocks, i.e., the converter cells, a variety of voltage and current source modular multilevel converter topologies are derived and thoroughly discussed. Furthermore, by applying the modularity principle at the system level, various types of high-power converters are introduced. The modularity of the multilevel converters is studied in depth, and the challenges as well as the opportunities for high-power applications are illustrated.

883 citations

Journal ArticleDOI
TL;DR: The development of MMC circuit topologies and their mathematical models over the years are presented and the evolution and technical challenges of the classical and model predictive control methods are discussed.
Abstract: Modular multilevel converter (MMC) is one of the most promising topologies for medium to high-voltage high-power applications. The main features of MMC are modularity, voltage and power scalability, fault tolerant and transformer-less operation, and high-quality output waveforms. Over the past few years, several research studies are conducted to address the technical challenges associated with the operation and control of the MMC. This paper presents the development of MMC circuit topologies and their mathematical models over the years. Also, the evolution and technical challenges of the classical and model predictive control methods are discussed. Finally, the MMC applications and their future trends are presented.

404 citations


Cites background or methods from "Modular Multilevel Converter With D..."

  • ...Due to the neutral-point balancing issue, the operating region of NPC-SM is limited at the higher modulation indices [58]....

    [...]

  • ...These states are applied to the SMs in each PWM period [58], [133]....

    [...]

Journal ArticleDOI
TL;DR: A new method is introduced, which is able to reduce the capacitor voltage ripples compared to the other methods, and a closed-loop control is also proposed which are able to track the circulating current references.
Abstract: This paper studies different circulating current references for the modular multilevel converter. The circulating current references are obtained from the instantaneous values of the output current and modulation signal of the phase leg. Therefore, the determination of the amplitude and phase of the output current is not needed, which is a significant improvement compared to other methods such as those based on injecting specific harmonics in the circulating currents. Among the different methods studied in this paper, a new method is introduced, which is able to reduce the capacitor voltage ripples compared to the other methods. A closed-loop control is also proposed which is able to track the circulating current references. With the discussed methods, the average values of the capacitor voltages are maintained at their reference while the voltage ripples are kept low. Experimental results are presented to demonstrate the effectiveness of the proposed and discussed methods.

333 citations


Cites background from "Modular Multilevel Converter With D..."

  • ...Although other SM configurations have been considered in the literature [29], [30], the most extensively used is the half-bridge topology because of its simplicity....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Abstract: Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.

3,415 citations


"Modular Multilevel Converter With D..." refers background in this paper

  • ...scribed in depth in references such as [2], [16], [14], and [36]....

    [...]

  • ...7, it is clearly observed that the apparent frequency of the output signal (VMO) is twice the amount because, in this topology, double the amount of triangular signals per phase is required [14]....

    [...]

Proceedings ArticleDOI
23 Jun 2003
TL;DR: In this article, a new multilevel converter topology suitable for very high voltage applications, especially network interties in power generation and transmission, is presented, and a suitable structure of the converter-control is proposed.
Abstract: This paper presents a new multilevel converter topology suitable for very high voltage applications, especially network interties in power generation and transmission. The fundamental concept and the applied control scheme is introduced. Simulation results of a 36 MW-network intertie illustrate the efficient operating characteristics. A suitable structure of the converter-control is proposed.

2,806 citations


"Modular Multilevel Converter With D..." refers background or methods or result in this paper

  • ...In publications such as [2] and [21]–[33], several capacitor voltage balancing methods have been treated with a MMC topology with 2L submodule concepts....

    [...]

  • ...scribed in depth in references such as [2], [16], [14], and [36]....

    [...]

  • ...It must be pointed out that, for instance, in [2], in a different approach compared to previous cases, a space vector...

    [...]

Journal ArticleDOI
TL;DR: A survey of different topologies, control strategies and modulation techniques used by cascaded multilevel inverters in the medium-voltage inverter market is presented.
Abstract: Cascaded multilevel inverters synthesize a medium-voltage output based on a series connection of power cells which use standard low-voltage component configurations. This characteristic allows one to achieve high-quality output voltages and input currents and also outstanding availability due to their intrinsic component redundancy. Due to these features, the cascaded multilevel inverter has been recognized as an important alternative in the medium-voltage inverter market. This paper presents a survey of different topologies, control strategies and modulation techniques used by these inverters. Regenerative and advanced topologies are also discussed. Applications where the mentioned features play a key role are shown. Finally, future developments are addressed.

2,111 citations


"Modular Multilevel Converter With D..." refers background in this paper

  • ...Several modulation techniques for multilevel inverters are explained in [38]....

    [...]

Journal ArticleDOI
TL;DR: In this article, two types of pulsewidth-modulated modular multilevel converters (PWM-MMCs) with focus on their circuit configurations and voltage balancing control are investigated.
Abstract: A modular multilevel converter (MMC) is one of the next-generation multilevel converters intended for high- or medium-voltage power conversion without transformers. The MMC is based on cascade connection of multiple bidirectional chopper-cells per leg, thus requiring voltage-balancing control of the multiple floating DC capacitors. However, no paper has made an explicit discussion on voltage-balancing control with theoretical and experimental verifications. This paper deals with two types of pulsewidth-modulated modular multilevel converters (PWM- MMCs) with focus on their circuit configurations and voltage-balancing control. Combination of averaging and balancing controls enables the PWM-MMCs to achieve voltage balancing without any external circuit. The viability of the PWM-MMCs, as well as the effectiveness of the voltage-balancing control, is confirmed by simulation and experiment.

1,506 citations

Journal ArticleDOI
TL;DR: In this paper, the modular multilevel cascade converter (MMCC) family based on cascade connection of multiple bidirectional chopper cells or single-phase full-bridge cells is classified from circuit configuration.
Abstract: This paper discusses the modular multilevel cascade converter (MMCC) family based on cascade connection of multiple bidirectional chopper cells or single-phase full-bridge cells. The MMCC family is classified from circuit configuration as follows: the single-star bridge cells (SSBC); the single-delta bridge cells (SDBC); the double-star chopper cells (DSCC); and the double-star bridge cells (DSBC). The term MMCC corresponds to a family name in a person while, for example, the term SSBC corresponds to a given name. Therefore, the term “MMCC-SSBC” can identify the circuit configuration without any confusion. Among the four MMCC family members, the SSBC and DSCC are more practical in cost, performance, and market than the others although a distinct difference exists in application between the SSBC and DSCC. This paper presents application examples of the SSBC to a battery energy storage system (BESS), the SDBC to a static synchronous compensator (STATCOM) for negative-sequence reactive-power control, and the DSCC to a motor drive for fans and blowers, along with their experimental results.

1,018 citations