scispace - formally typeset
Search or ask a question
Journal ArticleDOI

MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs)

01 Nov 2010-New Journal of Chemistry (The Royal Society of Chemistry)-Vol. 34, Iss: 11, pp 2366-2388
TL;DR: In this paper, a review of metal-organic frameworks (MOFs) and porous coordination polymers (PCPs) with selected examples of their structures, concepts for linkers, syntheses, post-synthesis modifications, metal nanoparticle formations in MOFs, porosity and zeolitic behavior for applications in gas storage for hydrogen, carbon dioxide, methane and applications in conductivity, luminescence and catalysis.
Abstract: This review (over 380 references) summarizes metal–organic frameworks (MOFs), Materials Institute Lavoisier (MILs), iso-reticular metal–organic frameworks (IR-MOFs), porous coordination networks (PCNs), zeolitic metal–organic frameworks (ZMOFs) and porous coordination polymers (PCPs) with selected examples of their structures, concepts for linkers, syntheses, post-synthesis modifications, metal nanoparticle formations in MOFs, porosity and zeolitic behavior for applications in gas storage for hydrogen, carbon dioxide, methane and applications in conductivity, luminescence and catalysis.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the research progress in metal-organic frameworks (MOFs) for CO 2 adsorption, storage, and separations that are directly related to CO 2 capture.

1,779 citations

Journal ArticleDOI
TL;DR: A comparison study of 3D Networks Based on Polypyrazolates, Metal 1,2,4-Triazolate Frameworks, and Univalent Coinage-Metal Tetrazolate Framework 1025.
Abstract: 2.1.2. Low Topology/Framework Density 1003 2.1.3. Side Group Directed Superstructures 1003 2.2. Synthesis Considerations 1003 2.3. Special Properties 1004 3. Metal Imidazolate Frameworks 1004 3.1. Chains and Rings 1004 3.2. Zeolitic and Zeolite-like Frameworks 1006 3.2.1. SOD-Type Zinc(II) 2-Methylimidazolate 1007 3.3. Nonporous 4-Connected Networks 1010 3.4. Polyimidazolates 1011 4. Metal Pyrazolate Frameworks 1011 4.1. Clusters and Chains 1011 4.2. 3D Networks Based on Polypyrazolates 1012 5. Metal 1,2,4-Triazolate Frameworks 1014 5.1. Simple 3-Connected Networks 1015 5.2. Quasi-Imidazolates 1018 5.3. With Coordinative Substituents 1019 5.4. With Secondary Counterions and/or Ligands 1021 6. Metal 1,2,3-Triazolate Frameworks 1023 7. Metal Tetrazolate Frameworks 1025 7.1. Univalent Coinage-Metal Tetrazolate Frameworks 1025

1,433 citations

Journal ArticleDOI
TL;DR: In this review, the applications of MOFs with multiple active sites in synergistic organic catalysis, photocatalysis and tandem reactions are discussed and proposed mechanisms are presented in detail.
Abstract: Metal–organic frameworks (MOFs) are porous crystalline materials constructed from metal ions or clusters and multidentate organic ligands. Recently, the use of MOFs or MOF composites as catalysts for synergistic catalysis and tandem reactions has attracted increasing attention due to their tunable open metal centres, functional organic linkers, and active guest species in their pores. In this review, the applications of MOFs with multiple active sites in synergistic organic catalysis, photocatalysis and tandem reactions are discussed. These multifunctional MOFs can be categorized by the type of active centre as follows: (i) open metal centres and functional organic linkers in the MOF structure, (ii) active guest sites in the pores and active sites in the MOF structure, and (iii) bimetallic nanoparticles (NPs) on MOF supports. The types of synergistic catalysis and tandem reactions promoted by multifunctional MOFs and their proposed mechanisms are presented in detail. Here, catalytic MOFs with a single type of active site and MOFs that only serve as supports to enhance substrate adsorption are not discussed.

1,394 citations

References
More filters
Journal ArticleDOI
TL;DR: The aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers, and the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli.
Abstract: The chemistry of the coordination polymers has in recent years advanced extensively, affording various architectures, which are constructed from a variety of molecular building blocks with different interactions between them. The next challenge is the chemical and physical functionalization of these architectures, through the porous properties of the frameworks. This review concentrates on three aspects of coordination polymers: 1). the use of crystal engineering to construct porous frameworks from connectors and linkers ("nanospace engineering"), 2). characterizing and cataloging the porous properties by functions for storage, exchange, separation, etc., and 3). the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli. Our aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers.

9,661 citations

Journal ArticleDOI
TL;DR: This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorbents in rigid and flexible MOFs, and primary relationships between adsorptive properties and framework features are analyzed.
Abstract: Adsorptive separation is very important in industry. Generally, the process uses porous solid materials such as zeolites, activated carbons, or silica gels as adsorbents. With an ever increasing need for a more efficient, energy-saving, and environmentally benign procedure for gas separation, adsorbents with tailored structures and tunable surface properties must be found. Metal–organic frameworks (MOFs), constructed by metal-containing nodes connected by organic bridges, are such a new type of porous materials. They are promising candidates as adsorbents for gas separations due to their large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability. This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorption in rigid and flexible MOFs. Based on possible mechanisms, selective adsorptions observed in MOFs are classified, and primary relationships between adsorption properties and framework features are analyzed. As a specific example of tailor-made MOFs, mesh-adjustable molecular sieves are emphasized and the underlying working mechanism elucidated. In addition to the experimental aspect, theoretical investigations from adsorption equilibrium to diffusion dynamics via molecular simulations are also briefly reviewed. Furthermore, gas separations in MOFs, including the molecular sieving effect, kinetic separation, the quantum sieving effect for H2/D2 separation, and MOF-based membranes are also summarized (227 references).

7,186 citations

Journal ArticleDOI
TL;DR: A critical review of the emerging field of MOF-based catalysis is presented and examples of catalysis by homogeneous catalysts incorporated as framework struts or cavity modifiers are presented.
Abstract: A critical review of the emerging field of MOF-based catalysis is presented. Discussed are examples of: (a) opportunistic catalysis with metal nodes, (b) designed catalysis with framework nodes, (c) catalysis by homogeneous catalysts incorporated as framework struts, (d) catalysis by MOF-encapsulated molecular species, (e) catalysis by metal-free organic struts or cavity modifiers, and (f) catalysis by MOF-encapsulated clusters (66 references).

7,010 citations

Journal ArticleDOI
18 Jan 2002-Science
TL;DR: Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Abstract: A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups –Br, –NH2, –OC3H7, –OC5H11, –C2H4, and –C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature.

6,922 citations

Journal ArticleDOI
18 Nov 1999-Nature
TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Abstract: Open metal–organic frameworks are widely regarded as promising materials for applications1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 in catalysis, separation, gas storage and molecular recognition. Compared to conventionally used microporous inorganic materials such as zeolites, these organic structures have the potential for more flexible rational design, through control of the architecture and functionalization of the pores. So far, the inability of these open frameworks to support permanent porosity and to avoid collapsing in the absence of guest molecules, such as solvents, has hindered further progress in the field14,15. Here we report the synthesis of a metal–organic framework which remains crystalline, as evidenced by X-ray single-crystal analyses, and stable when fully desolvated and when heated up to 300?°C. This synthesis is achieved by borrowing ideas from metal carboxylate cluster chemistry, where an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxylates. The rigid and divergent character of the added linker allows the articulation of the clusters into a three-dimensional framework resulting in a structure with higher apparent surface area and pore volume than most porous crystalline zeolites. This simple and potentially universal design strategy is currently being pursued in the synthesis of new phases and composites, and for gas-storage applications.

6,778 citations