scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Molecular aspects in pathogen-fruit interactions: Virulence and resistance

TL;DR: This review presents the current knowledge of molecular aspects in pathogen-fruit interactions, addressing the following topics: the application of new “omics” technologies for studying these interactions; the molecular mechanisms of fungal pathogen attack; the regulation of virulence by exogenous factors; and, finally, fruit defense mechanisms.
About: This article is published in Postharvest Biology and Technology.The article was published on 2016-12-01 and is currently open access. It has received 123 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: The present review attempts to highlight how the search for alternative postharvest disease management technologies has been a journey from simplicity to complexity.

201 citations

Journal ArticleDOI
Dongchao Ji1, Tong Chen1, Danying Ma1, Jialei Liu1, Yong Xu1, Shiping Tian1 
TL;DR: Methyl thujate, a monoterpenoid substance, was effective in controlling postharvest gray mold caused by Botrytis cinerea on apple fruit, during application in aqueous solution.

86 citations

Journal ArticleDOI
TL;DR: The role of ROS in fruit defense reactions against pathogens and in fungi pathogenicity during fruit–pathogen interaction is examined and the scavenging systems determining ROS homeostasis are focused on.
Abstract: Reactive oxygen species (ROS) play a dual role in fruit–pathogen interaction, which largely depends on their different levels in cells. Fruit recognition of a pathogen immediately triggers an oxidative burst that is considered an integral part of the fruit defense response. ROS are also necessary for the virulence of pathogenic fungi. However, the accumulation of ROS in cells causes molecular damage and finally leads to cell death. In this review, on the basis of data regarding ROS production and the scavenging systems determining ROS homeostasis, we focus on the role of ROS in fruit defense reactions against pathogens and in fungi pathogenicity during fruit–pathogen interaction.

78 citations

Journal ArticleDOI
TL;DR: In this review, the application of antagonistic yeasts for postharvest decay control is summarized, including the antagonistic yeast species and sources, antagonistic mechanisms, commercial applications, and efficacy improvement.
Abstract: Fruit plays an important role in human diet. Whereas, fungal pathogens cause huge losses of fruit during storage and transportation, abuse of chemical fungicides leads to serious environmental pollution and endangers human health. Antagonistic yeasts (also known as biocontrol yeasts) are promising substitutes for chemical fungicides in the control of postharvest decay owing to their widespread distribution, antagonistic ability, environmentally friendly nature, and safety for humans. Over the past few decades, the biocontrol mechanisms of antagonistic yeasts have been extensively studied, such as nutrition and space competition, mycoparasitism, and induction of host resistance. Moreover, combination of antagonistic yeasts with other agents or treatments were developed to improve the biocontrol efficacy. Several antagonistic yeasts are used commercially. In this review, the application of antagonistic yeasts for postharvest decay control is summarized, including the antagonistic yeast species and sources, antagonistic mechanisms, commercial applications, and efficacy improvement. Issues requiring further study are also discussed.

64 citations

References
More filters
Journal ArticleDOI
26 Aug 2007-Nature
TL;DR: A high-quality draft of the genome sequence of grapevine is obtained from a highly homozygous genotype, revealing the contribution of three ancestral genomes to the grapevine haploid content and explaining the chronology of previously described whole-genome duplication events in the evolution of flowering plants.
Abstract: The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.

3,311 citations


"Molecular aspects in pathogen-fruit..." refers background in this paper

  • ...Fruit crop genomes that have been 2 sequenced include grape (Jaillon et al., 2007); apple (Velasco et al., 2010); banana 3 (D’Hont et al., 2012); citrus (Xu et al., 2013); peach (Verde et al., 2013); and pear 4 (Chagné et al., 2014)....

    [...]

Journal ArticleDOI
TL;DR: Professional phagocytes generate high levels of reactive oxygen species (ROS) using a superoxide-generating NADPH oxidase as part of their armoury of microbicidal mechanisms, leading to the concept that ROS are 'intentionally' generated in these cells with distinctive cellular functions related to innate immunity, signal transduction and modification of the extracellular matrix.
Abstract: Professional phagocytes generate high levels of reactive oxygen species (ROS) using a superoxide-generating NADPH oxidase as part of their armoury of microbicidal mechanisms. The multicomponent phagocyte oxidase (Phox), which has been well characterized over the past three decades, includes the catalytic subunit gp91phox. Lower levels of ROS are seen in non-phagocytic cells, but are usually thought to be 'accidental' byproducts of aerobic metabolism. The discovery of a family of superoxide-generating homologues of gp91phox has led to the concept that ROS are 'intentionally' generated in these cells with distinctive cellular functions related to innate immunity, signal transduction and modification of the extracellular matrix.

2,865 citations

Journal ArticleDOI
TL;DR: The evolutionary conservation of similar defense-related proteins in monocots and dicots, but also their divergent occurrence in other conditions, suggest that these proteins serve essential functions in plant life, whether in defense or not.
Abstract: Inducible defense-related proteins have been described in many plant species upon infection with oomycetes, fungi, bacteria, or viruses, or insect attack. Several types of proteins are common and have been classified into 17 families of pathogenesis-related proteins (PRs). Others have so far been found to occur more specifically in some plant species. Most PRs and related proteins are induced through the action of the signaling compounds salicylic acid, jasmonic acid, or ethylene, and possess antimicrobial activities in vitro through hydrolytic activities on cell walls, contact toxicity, and perhaps an involvement in defense signaling. However, when expressed in transgenic plants, they reduce only a limited number of diseases, depending on the nature of the protein, plant species, and pathogen involved. As exemplified by the PR-1 proteins in Arabidopsis and rice, many homologous proteins belonging to the same family are regulated developmentally and may serve different functions in specific organs or tissues. Several defense-related proteins are induced during senescence, wounding or cold stress, and some possess antifreeze activity. Many defense-related proteins are present constitutively in floral tissues and a substantial number of PR-like proteins in pollen, fruits, and vegetables can provoke allergy in humans. The evolutionary conservation of similar defense-related proteins in monocots and dicots, but also their divergent occurrence in other conditions, suggest that these proteins serve essential functions in plant life, whether in defense or not.

2,747 citations


"Molecular aspects in pathogen-fruit..." refers background in this paper

  • ...Specifically, ethylene has been implicated in biotic stress, 19 both as a virulence factor of fungal and bacterial pathogens and as a signaling compound 20 in disease resistance (van Loon et al., 2006a)....

    [...]

  • ...19 A further active defense mechanism is related to pathogenesis-related proteins (PR), 20 which have diverse functions and most of which are induced by stress (biotic or abiotic) 21 (van Loon et al., 2006b)....

    [...]

Journal ArticleDOI
Riccardo Velasco, Andrey Zharkikh1, Jason P. Affourtit2, Amit Dhingra3, Alessandro Cestaro, Ananth Kalyanaraman3, Paolo Fontana, Satish Bhatnagar1, Michela Troggio, Dmitry Pruss1, Silvio Salvi4, Massimo Pindo, Paolo Baldi, Sara Castelletti, Marina Cavaiuolo, G. Coppola, Fabrizio Costa, V. Cova, Antonio Dal Ri, Vadim V. Goremykin, M. Komjanc, Sara Longhi, P. Magnago, Giulia Malacarne, Mickael Malnoy, Diego Micheletti, Marco Moretto, Michele Perazzolli, Azeddine Si-Ammour, Silvia Vezzulli, E. Zini, Glenn Eldredge1, Lisa M. Fitzgerald1, N. Gutin1, Jerry S. Lanchbury1, Teresita Macalma1, J.T. Mitchell1, Julia Reid1, Bryan Wardell1, Chinnappa D. Kodira2, Zhoutao Chen2, Brian Desany2, Faheem Niazi2, Melinda Palmer2, Tyson Koepke3, Derick Jiwan3, Scott Schaeffer3, Vandhana Krishnan3, Changjun Wu3, Vu T. Chu5, Stephen T. King5, Jessica Vick5, Quanzhou Tao, Amy Mraz, Aimee Stormo, Keith E. Stormo, Robert Bogden, Davide Ederle6, Alessandra Stella6, Alberto Vecchietti6, Martin M. Kater7, Simona Masiero7, Pauline Lasserre, Yves Lespinasse, Andrew C. Allan8, Vincent G. M. Bus8, David Chagné8, Ross N. Crowhurst8, Andrew P. Gleave8, Enrico Lavezzo9, Jeffrey A. Fawcett10, Jeffrey A. Fawcett11, Sebastian Proost11, Sebastian Proost10, Pierre Rouzé10, Pierre Rouzé11, Lieven Sterck10, Lieven Sterck11, Stefano Toppo9, Barbara Lazzari6, Roger P. Hellens8, Charles-Eric Durel, Alexander Gutin1, Roger E. Bumgarner5, Susan E. Gardiner8, Mark H. Skolnick1, Michael Egholm2, Yves Van de Peer10, Yves Van de Peer11, Francesco Salamini6, Roberto Viola 
TL;DR: It is shown that a relatively recent (>50 million years ago) genome-wide duplication has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae, which partly support the monophyly of the ancestral paleohexaploidy of eudicots.
Abstract: We report a high-quality draft genome sequence of the domesticated apple (Malus × domestica). We show that a relatively recent (>50 million years ago) genome-wide duplication (GWD) has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae. Traces of older GWDs partly support the monophyly of the ancestral paleohexaploidy of eudicots. Phylogenetic reconstruction of Pyreae and the genus Malus, relative to major Rosaceae taxa, identified the progenitor of the cultivated apple as M. sieversii. Expansion of gene families reported to be involved in fruit development may explain formation of the pome, a Pyreae-specific false fruit that develops by proliferation of the basal part of the sepals, the receptacle. In apple, a subclade of MADS-box genes, normally involved in flower and fruit development, is expanded to include 15 members, as are other gene families involved in Rosaceae-specific metabolism, such as transport and assimilation of sorbitol.

1,718 citations


"Molecular aspects in pathogen-fruit..." refers background in this paper

  • ...Fruit crop genomes that have been 2 sequenced include grape (Jaillon et al., 2007); apple (Velasco et al., 2010); banana 3 (D’Hont et al., 2012); citrus (Xu et al., 2013); peach (Verde et al., 2013); and pear 4 (Chagné et al., 2014)....

    [...]

Journal ArticleDOI
TL;DR: The production of reactive oxygen species (ROS), via consumption of oxygen in a so-called oxidative burst, is one of the earliest cellular responses following successful pathogen recognition.
Abstract: The production of reactive oxygen species (ROS), via consumption of oxygen in a so-called oxidative burst, is one of the earliest cellular responses following successful pathogen recognition. Apoplastic generation of superoxide (O2−), or its dismutation product hydrogen peroxide (H2O2), has been

1,440 citations


"Molecular aspects in pathogen-fruit..." refers background in this paper

  • ...Knowledge of plant-fungal interaction indicates that 15 a crucial role in host defense is played by a rapid and massive generation of ROS within 16 the host cells, a process known as an oxidative burst (Torres et al., 2006)....

    [...]

  • ...the host cells, a process known as an oxidative burst (Torres et al., 2006)....

    [...]