scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Molecular Characterization of Polymer Networks.

TL;DR: A critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers, can be found in this paper.
Abstract: Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a mechanically interlocked network (MIN) inspired by a mortise-and-tenon joint inspired mechanically interlocking network is presented. But the model is based on a rotaxane crosslink.
Abstract: Mortise-and-tenon joints have been widely used for thousands of years in wooden architectures in virtue of their artistic and functional performance. However, imitation of similar structural and mechanical design philosophy to construct mechanically adaptive materials at the molecular level is a challenge. Herein, we report a mortise-and-tenon joint inspired mechanically interlocked network (MIN), in which the [2]rotaxane crosslink not only mimics the joint in structure, but also reproduces its function in modifying mechanical properties of the MIN. Benefiting from the hierarchical energy dissipative ability along with the controllable intramolecular movement of the mechanically interlocked crosslink, the resultant MIN simultaneously exhibits notable mechanical adaptivity and structural stability in a single system, as manifested by decent stiffness, strength, toughness, and deformation recovery capacity.

38 citations

Journal ArticleDOI
TL;DR: In this paper , the performance and phase separation of epoxy asphalt binders and bond coats were analyzed using different models of differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA).

31 citations

Journal ArticleDOI
TL;DR: In this article, a multiscale phenomenon of polymer adhesion is also a complex multi-scale phenomenon, such that the solution of adhesion problems requires a convergence of chem...
Abstract: Polymer adhesion is ubiquitous in both the natural world and human technology. It is also a complex multiscale phenomenon, such that the solution of adhesion problems requires a convergence of chem...

30 citations

Journal ArticleDOI
04 Jan 2022
TL;DR: By exerting strong control on molecular level over the availability of exchangeable functional groups, a remarkable improvement of VU properties was obtained.
Abstract: We report a straightforward chemical strategy to tackle current challenges of irreversible deformation in low T g vitrimers at operating temperature. In particular, vinylogous urethane (VU) vitrimers were prepared where reactive free amines, necessary for material flow, were temporarily shielded inside the network backbone, by adding a small amount of dibasic ester to the curing mixture. The amines could be released as reactive chain ends from the resulting dicarboxamide bonds via thermally reversible cyclisation to an imide moiety. Indeed, (re)generation of the required nucleophilic amines as network defects ensured reprocessing and rapid material flow at higher temperature, where exchange dynamics are (re)activated. As a result, VU vitrimers were obtained with limited creep at service temperature, yet with good reprocessability at elevated temperatures. Thus, by exerting strong control on molecular level over the availability of exchangeable functional groups, a remarkable improvement of VU properties was obtained.

27 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used a Berkovich indenter to determine hardness and elastic modulus from indentation load-displacement data, and showed that the curve of the curve is not linear, even in the initial stages of the unloading process.
Abstract: The indentation load-displacement behavior of six materials tested with a Berkovich indenter has been carefully documented to establish an improved method for determining hardness and elastic modulus from indentation load-displacement data. The materials included fused silica, soda–lime glass, and single crystals of aluminum, tungsten, quartz, and sapphire. It is shown that the load–displacement curves during unloading in these materials are not linear, even in the initial stages, thereby suggesting that the flat punch approximation used so often in the analysis of unloading data is not entirely adequate. An analysis technique is presented that accounts for the curvature in the unloading data and provides a physically justifiable procedure for determining the depth which should be used in conjunction with the indenter shape function to establish the contact area at peak load. The hardnesses and elastic moduli of the six materials are computed using the analysis procedure and compared with values determined by independent means to assess the accuracy of the method. The results show that with good technique, moduli can be measured to within 5%.

22,557 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of surface scratches on the mechanical strength of solids, and some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion.
Abstract: In the course of an investigation of the effect of surface scratches on the mechanical strength of solids, some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion. The original object of the work, which was carried out at the Royal Aircraft Estab­lishment, was the discovery of the effect of surface treatment—such as, for instance, filing, grinding or polishing—on the strength of metallic machine parts subjected to alternating or repeated loads. In the case of steel, and some other metals in common use, the results of fatigue tests indicated that the range of alternating stress which could be permanently sustained by the material was smaller than the range within which it was sensibly elastic, after being subjected to a great number of reversals. Hence it was inferred that the safe range of loading of a part, having a scratched or grooved surface of a given type, should be capable of estimation with the help of one of the two hypotheses of rupture commonly used for solids which are elastic to fracture. According to these hypotheses rupture may be expected if (a) the maximum tensile stress, ( b ) the maximum extension, exceeds a certain critical value. Moreover, as the behaviour of the materials under consideration, within the safe range of alternating stress, shows very little departure from Hooke’s law, it was thought that the necessary stress and strain calculations could be performed by means of the mathematical theory of elasticity.

10,162 citations

Book
01 Jan 1992
TL;DR: In this article, a scaling solution for the Bethe lattice is proposed for cluster numbers and a scaling assumption for cluster number scaling assumptions for cluster radius and fractal dimension is proposed.
Abstract: Preface to the Second Edition Preface to the First Edition Introduction: Forest Fires, Fractal Oil Fields, and Diffusion What is percolation? Forest fires Oil fields and fractals Diffusion in disordered media Coming attractions Further reading Cluster Numbers The truth about percolation Exact solution in one dimension Small clusters and animals in d dimensions Exact solution for the Bethe lattice Towards a scaling solution for cluster numbers Scaling assumptions for cluster numbers Numerical tests Cluster numbers away from Pc Further reading Cluster Structure Is the cluster perimeter a real perimeter? Cluster radius and fractal dimension Another view on scaling The infinite cluster at the threshold Further reading Finite-size Scaling and the Renormalization Group Finite-size scaling Small cell renormalization Scaling revisited Large cell and Monte Carlo renormalization Connection to geometry Further reading Conductivity and Related Properties Conductivity of random resistor networks Internal structure of the infinite cluster Multitude of fractal dimensions on the incipient infinite cluster Multifractals Fractal models Renormalization group for internal cluster structure Continuum percolation, Swiss-cheese models and broad distributions Elastic networks Further reading Walks, Dynamics and Quantum Effects Ants in the labyrinth Probability distributions Fractons and superlocalization Hulls and external accessible perimeters Diffusion fronts Invasion percolation Further reading Application to Thermal Phase Transitions Statistical physics and the Ising model Dilute magnets at low temperatures History of droplet descriptions for fluids Droplet definition for the Ising model in zero field The trouble with Kertesz Applications Dilute magnets at finite temperatures Spin glasses Further reading Summary Numerical Techniques

7,349 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of surface energy on the contact between elastic solids is discussed and an analytical model for its effect upon the contact size and the force of adhesion between two lightly loaded spherical solid surfaces is presented.
Abstract: This paper discusses the influence of surface energy on the contact between elastic solids. Equations are derived for its effect upon the contact size and the force of adhesion between two lightly loaded spherical solid surfaces. The theory is supported by experiments carried out on the contact of rubber and gelatine spheres.

6,981 citations

Trending Questions (1)
What is molecular characterization?

The paper does not explicitly define molecular characterization. The paper discusses the challenges and techniques for characterizing the molecular structure and properties of polymer networks.