scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Molecular dynamics above the smectic A-isotropic phase transition of thermotropic liquid crystals studied by NMR

11 Jul 2004-Chemical Physics Letters (Elsevier)-Vol. 392, Iss: 4, pp 403-408
TL;DR: In this article, a fast field cycling Nuclear Magnetic Resonance study of the molecular dynamics in the region above the smectic A-isotropic phase transition in thermotropic liquid crystals is presented.
About: This article is published in Chemical Physics Letters.The article was published on 2004-07-11. It has received 9 citations till now. The article focuses on the topics: Thermotropic crystal & Phase transition.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present an attempt towards a unified picture of the direct transition from the isotropic to smectic-A phase, including structure and nature revealed by experiments, molecular models and Landau-de Gennes theory.

23 citations

Journal ArticleDOI
TL;DR: Polarizing optical microscopy supports the identification of a smectic phase below the high-temperature heat capacity signature indicating that the low-tem temperature feature represents an injectedSmectic-smecticphase transition.
Abstract: The first-order transition from the isotropic (I) to smectic-A (Sm A) phase in the liquid crystal 4-cyano-4′-decylbiphenyl (10CB) doped with the polar solvent acetone (ace) has been studied as a function of solvent concentration by high-resolution ac-calorimetry. Heating and cooling scans were performed for miscible 10CB+ace samples having acetone mole fractions from xace=0.05 (1 wt %) to 0.36 (10%) over a wide temperature range from 310 to 327 K. Two distinct first-order phase transition features are observed in the mixture whereas there is only one transition (I-Sm A) in the pure 10CB for that particular temperature range. Both calorimetric features reproduce on repeated heating and cooling scans and evolve with increasing xace with the high-temperature feature relatively stable in temperature but reduced in size while the low-temperature feature shifts dramatically to lower temperature and exhibits increased dispersion. The coexistence region increases for the low-temperature feature but remains fairly constant for the high-temperature feature as a function of xace. Polarizing optical microscopy supports the identification of a smectic phase below the high-temperature heat capacity signature indicating that the low-temperature feature represents an injected smectic-smectic phase transition. These effects may be the consequence of screening the intermolecular potential of the liquid crystals by the solvent that stabilizes a weak smectic phase intermediate of the isotropic and pure smectic-A.

14 citations

Journal ArticleDOI
TL;DR: The findings show a clear difference in the relaxation dispersion between the two liquid crystals homologues, and it is observed that the columnar undulations have a much stronger contribution to the relaxation rate in the low frequency regime in the case of the fully hydrogenated triphenylene.
Abstract: The Larmor frequency and temperature dependence of the proton nuclear magnetic resonance (NMR) spin–lattice relaxation time was measured in the isotropic and columnar phases of both chain-end fluorinated triphenylene disk-like and fully hydrogenated molecules. In the columnar phase, the results are interpreted in terms of the collective motions, due to the deformations of the columns, and individual molecular translational self-diffusion displacements and rotations/reorientacions. In the isotropic phase, local molecular motions and order fluctuations as a pretransitional effect were considered. The activation energies of the molecular motions of the partially fluorinated molecule were found to be higher than those corresponding to the hydrocarbon homologue. Our findings show a clear difference in the relaxation dispersion between the two liquid crystals homologues. In particular it is observed that the columnar undulations have a much stronger contribution to the relaxation rate in the low frequency regim...

10 citations

Journal ArticleDOI
TL;DR: Based on the enthalpy space and distortion-sensitive analysis, the prevalence of the mode coupling theory (MCT) "critical" and "glassy" dynamics is shown and it is shown that the value of the fragile strength coefficient D(T) is characteristic of a very fragile glassy liquid whereas the steepness index m is typical of a strong one.
Abstract: The temperature evolution of the primary relaxation time in the isotropic phase of 4-cyano-4'-tetradecylbiphenyl (14CB) above the isotropic-smectic A (I-SmA) transition is discussed. Based on the enthalpy space and distortion-sensitive analysis, the prevalence of the mode coupling theory (MCT) "critical" and "glassy" dynamics is shown. The obtained singular dependence is related to the MCT critical temperature located approximately 48 K below the clearing (I-SmA) temperature. However, a weak but detectable distortion in the immediate vicinity of the transition occurs. It is also shown that the value of the fragile strength coefficient D(T) is characteristic of a very fragile glassy liquid whereas the steepness index m is typical of a strong one. Both magnitudes anomalously change on approaching the I-SmA phase transition. The static permittivity shows the pretransitional effect linked to the temperature of the hypothetical continuous phase transition located approximately 10.2 K below the I-SmA transition.

8 citations

References
More filters
Book
01 Feb 1974
TL;DR: In this paper, the authors define an order parameter statistical theories of the nematic order phenomonological description of the nematic-isotopic mixtures and describe the properties of these mixtures.
Abstract: Part 1 Liquid crystals - main types and properties: introduction - what is a liquid crystal? the building blocks nematics and cholesterics smectics columnar phases more on long-, quasi-long and short-range order remarkable features of liquid crystals. Part 2 Long- and short-range order in nematics: definition of an order parameter statistical theories of the nematic order phenomonological description of the nematic-isotopic mixtures. Part 3 Static distortion in a nematic single crystal: principles of the continuum theory magnetic field effects electric field effects in an insulating nematic fluctuations in the alignment hydrostatics of nematics. Part 4 Defects and textures in nematics: observations disclination lines point disclinations walls under magnetic fields umbilics surface disclinations. Part 5 Dynamical properties of nematics: the equations of "nematodynamics" experiments measuring the Leslie co-efficients convective instabilities under electric fields molecular motions. Part 6 Cholesterics: optical properties of an ideal helix agents influencing the pitch dynamical properties textures and defects in cholesterics. Part 7 Smectics: symmetry of the main smectic phases continuum description of smectics A and C remarks on phase and precritical phenomena.

9,683 citations

Book
01 Jan 1961

8,649 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the effect of the thermal motion of the magnetic nuclei upon the spin-spin interaction in a rigid lattice and the line width of the absorption line.
Abstract: The exchange of energy between a system of nuclear spins immersed in a strong magnetic field, and the heat reservoir consisting of the other degrees of freedom (the "lattice") of the substance containing the magnetic nuclei, serves to bring the spin system into equilibrium at a finite temperature. In this condition the system can absorb energy from an applied radiofrequency field. With the absorption of energy, however, the spin temperature tends to rise and the rate of absorption to decrease. Through this "saturation" effect, and in some cases by a more direct method, the spin-lattice relaxation time ${T}_{1}$ can be measured. The interaction among the magnetic nuclei, with which a characteristic time $T_{2}^{}{}_{}{}^{\ensuremath{'}}$ is associated, contributes to the width of the absorption line. Both interactions have been studied in a variety of substances, but with the emphasis on liquids containing hydrogen.Magnetic resonance absorption is observed by means of a radiofrequency bridge; the magnetic field at the sample is modulated at a low frequency. A detailed analysis of the method by which ${T}_{1}$ is derived from saturation experiments is given. Relaxation times observed range from ${10}^{\ensuremath{-}4}$ to ${10}^{2}$ seconds. In liquids ${T}_{1}$ ordinarily decreases with increasing viscosity, in some cases reaching a minimum value after which it increases with further increase in viscosity. The line width meanwhile increases monotonically from an extremely small value toward a value determined by the spin-spin interaction in the rigid lattice. The effect of paramagnetic ions in solution upon the proton relaxation time and line width has been investigated. The relaxation time and line width in ice have been measured at various temperatures.The results can be explained by a theory which takes into account the effect of the thermal motion of the magnetic nuclei upon the spin-spin interaction. The local magnetic field produced at one nucleus by neighboring magnetic nuclei, or even by electronic magnetic moments of paramagnetic ions, is spread out into a spectrum extending to frequencies of the order of $\frac{1}{{\ensuremath{\tau}}_{c}}$, where ${\ensuremath{\tau}}_{c}$ is a correlation time associated with the local Brownian motion and closely related to the characteristic time which occurs in Debye's theory of polar liquids. If the nuclear Larmor frequency $\ensuremath{\omega}$ is much less than $\frac{1}{{\ensuremath{\tau}}_{c}}$, the perturbations caused by the local field nearly average out, ${T}_{1}$ is inversely proportional to ${\ensuremath{\tau}}_{c}$, and the width of the resonance line, in frequency, is about $\frac{1}{{T}_{1}}$. A similar situation is found in hydrogen gas where ${\ensuremath{\tau}}_{c}$ is the time between collisions. In very viscous liquids and in some solids where $\ensuremath{\omega}{\ensuremath{\tau}}_{c}g1$, a quite different behavior is predicted, and observed. Values of ${\ensuremath{\tau}}_{c}$ for ice, inferred from nuclear relaxation measurements, correlate well with dielectric dispersion data.Formulas useful in estimating the detectability of magnetic resonance absorption in various cases are derived in the appendix.

4,973 citations

Book
01 Jan 1994
TL;DR: In this article, the authors cover NMR techniques used in studying liquid crystals and present up-to-date results from such studies, including rotations, Euler angles and Wigner rotation matrices.
Abstract: Liquid crystals have become ubiquitous in the displays for electronic devices, ranging from wrist watches to laptop computers. Nuclear magnetic resonance is one of the important mechanisms for determining their structures tures and properties. This book covers NMR techniques used in studying liquid crystals and present up to date results from such studies. Ronald Dong has worked on NMR in liquid crystals for much of his professional career. Topics covered include: Nuclear spin dynamics, orientational order, molecular field theories of liquid-crystal molecules, nuclear spin relaxation, spin relaxation, rotational and translational dynamics, internal dynamics of liquid-crystal molecules, NMR in liquid crystals; an appendix covers rotations, Euler angles and Wigner rotation matrices.

452 citations