scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Molecular dynamics simulations and biochemical characterization of Pf14-3-3 and PfCDPK1 interaction towards its role in growth of human malaria parasite

26 Jun 2020-Biochemical Journal (Portland Press)-Vol. 477, Iss: 12, pp 2153-2177
TL;DR: Overall, this study characterizes 14-3-3I as a scaffold protein in the malaria parasite and unveils CDPK1 as its previously unidentified target, setting a precedent for the rational design of 14- 3-3 based PPI inhibitors by utilizing 14-2-3 recognition motif peptides, as a potential antimalarial strategy.
Abstract: Scaffold proteins play pivotal role as modulators of cellular processes by operating as multipurpose conformation clamps. 14-3-3 proteins are gold-standard scaffold modules that recognize phosphoSer/Thr (pS/pT) containing conserved motifs, and confer conformational changes leading to modulation of functional parameters of their target proteins. Modulation in functional activity of kinases has been attributed to their interaction with 14-3-3 proteins. Herein, we have annotated and characterized PF3D7_0818200 as 14-3-3 isoform I in Plasmodium falciparum 3D7, and its interaction with one of the key kinases of the parasite, Calcium-Dependent Protein Kinase 1 (CDPK1) by performing various analytical biochemistry and biophysical assays. Molecular dynamics simulation studies indicated that CDPK1 polypeptide sequence (61KLGpS64) behaves as canonical Mode I-type (RXXpS/pT) consensus 14-3-3 binding motif, mediating the interaction. The 14-3-3I/CDPK1 interaction was validated in vitro with ELISA and SPR, which confirmed that the interaction is phosphorylation dependent, with binding affinity constant of 670 ± 3.6 nM. The interaction of 14-3-3I with CDPK1 was validated with well characterized optimal 14-3-3 recognition motifs: Mode I-type ARSHpSYPA and Mode II-type RLYHpSLPA, by simulation studies and ITC. This interaction was found to marginally enhance CDPK1 functional activity. Furthermore, interaction antagonizing peptidomimetics showed growth inhibitory impact on the parasite indicating crucial physiological role of 14-3-3/CDPK1 interaction. Overall, this study characterizes 14-3-3I as a scaffold protein in the malaria parasite and unveils CDPK1 as its previously unidentified target. This sets a precedent for the rational design of 14-3-3 based PPI inhibitors by utilizing 14-3-3 recognition motif peptides, as a potential antimalarial strategy.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, an overview of the updated kinome of Plasmodium falciparum, the species that is the largest contributor to malaria mortality, and current knowledge pertaining to the function of parasite-encoded protein kinases during the parasite's life cycle is presented.

13 citations

Journal ArticleDOI
TL;DR: In this paper, a set of eight proteins with a remarkable resemblance to human proteins were found to be moonlighting proteins carried by Plasmodium falciparum molecules carried by extracellular vesicles.
Abstract: Red blood cells infected with Plasmodium falciparum secrete extracellular vesicles in order to facilitate the survival and infection of human cells. Various researchers have studied the composition of these extracellular vesicles and identified the proteins contained inside. In this work, we used that information to detect potential P. falciparum molecules that could be imitating host proteins. We carried out several searches to detect sequences and structural similarities between the parasite and host. Additionally, the possibility of functional mimicry was explored in line with the potential role that each candidate can perform for the parasite inside the host. Lastly, we determined a set of eight sequences (mainly moonlighting proteins) with a remarkable resemblance to human proteins. Due to the resemblance observed, this study proposes the possibility that certain P. falciparum molecules carried by extracellular vesicles could be imitating human proteins to manipulate the host cell's physiology.

3 citations

Journal ArticleDOI
TL;DR: In this paper , phthalimide analogs possessing the bioactive scaffolds, benzimidazole and 1,2,3-triazole, were evaluated for in vitro and in vivo anti-plasmodial activity without any apparent hemolysis, or cytotoxicity.
Abstract: Constant emergence of drug-resistant Plasmodium falciparum warrants urgent need for effective and inexpensive drugs. Herein, phthalimide (Pht) analogs possessing the bioactive scaffolds, benzimidazole and 1,2,3-triazole, were evaluated for in vitro and in vivo anti-plasmodial activity without any apparent hemolysis, or cytotoxicity. Analogs 4(a-e) inhibited the growth of 3D7 and RKL-9 strains at submicromolar concentrations. Defects were observed during parasite egress from or invasion of the red blood cells. Mitochondrial membrane depolarization was measured as one of the causes of cell death. Phts 4(a-e) in combination with artemisinin exhibited two-to three-fold increased efficacy. Biophysical and biochemical analysis suggest that Pht analogs mediate plasmodial growth inhibition by interacting with tubulin protein of the parasite. Lastly, Phts 4(a-e) significantly decreased parasitemia and extended host survival in murine model Plasmodium berghei ANKA infection. Combined, the data indicate that Pht analogs should be further explored, which could offer novel value to the antimalarial drug development pipeline.

3 citations

Journal ArticleDOI
TL;DR: ST72 with CQ resulted in improved growth inhibitory activity than individual drugs in both in vitro and in vivo studies and did not show any significant hemolysis or cytotoxicity against human HepG2 cells suggesting a good safety profile.
Abstract: We employed a comprehensive approach of target-based virtual high-throughput screening to find potential hits from the ZINC database of natural compounds against cysteine proteases falcipain-2 and falcipain-3 (FP2 and FP3). Molecular docking studies showed the initial hits showing high binding affinity and specificity toward FP2 were selected. Furthermore, the enzyme inhibition and surface plasmon resonance assays were performed which resulted in a compound ZINC12900664 (ST72) with potent inhibitory effects on purified FP2. ST72 exhibited strong growth inhibition of chloroquine-sensitive (3D7; EC50 = 2.8 µM) and chloroquine-resistant (RKL-9; EC50 = 6.7 µM) strains of Plasmodium falciparum. Stage-specific inhibition assays revealed a delayed and growth defect during parasite growth and development in parasites treated with ST72. Furthermore, ST72 significantly reduced parasite load and increased host survival in a murine model infected with Plasmodium berghei ANKA. No Evans blue staining in ST72 treatment indicated that ST72 mediated protection of blood–brain barrier integrity in mice infected with P. berghei. ST72 did not show any significant hemolysis or cytotoxicity against human HepG2 cells suggesting a good safety profile. Importantly, ST72 with CQ resulted in improved growth inhibitory activity than individual drugs in both in vitro and in vivo studies.

2 citations

Journal ArticleDOI
TL;DR: In this article, the role of signaling pathways in regulation of the key processes of merozoite egress and red blood cell invasion by Plasmodium falciparum and, in particular, the importance of the second messengers, cAMP and Ca2+, and cyclic nucleotide dependent kinases.
Abstract: We review the role of signaling pathways in regulation of the key processes of merozoite egress and red blood cell invasion by Plasmodium falciparum and, in particular, the importance of the second messengers, cAMP and Ca2+, and cyclic nucleotide dependent kinases. cAMP-dependent protein kinase (PKA) is comprised of cAMP-binding regulatory, and catalytic subunits. The less well conserved cAMP-binding pockets should make cAMP analogs attractive drug leads, but this approach is compromised by the poor membrane permeability of cyclic nucleotides. We discuss how the conserved nature of ATP-binding pockets makes ATP analogs inherently prone to off-target effects and how ATP analogs and genetic manipulation can be useful research tools to examine this. We suggest that targeting PKA interaction partners as well as substrates, or developing inhibitors based on PKA interaction sites or phosphorylation sites in PKA substrates, may provide viable alternative approaches for the development of anti-malarial drugs. Proximity of PKA to a substrate is necessary for substrate phosphorylation, but the P. falciparum genome encodes few recognizable A-kinase anchor proteins (AKAPs), suggesting the importance of PKA-regulatory subunit myristylation and membrane association in determining substrate preference. We also discuss how Pf14-3-3 assembles a phosphorylation-dependent signaling complex that includes PKA and calcium dependent protein kinase 1 (CDPK1) and how this complex may be critical for merozoite invasion, and a target to block parasite growth. We compare altered phosphorylation levels in intracellular and egressed merozoites to identify potential PKA substrates. Finally, as host PKA may have a critical role in supporting intracellular parasite development, we discuss its role at other stages of the life cycle, as well as in other apicomplexan infections. Throughout our review we propose possible new directions for the therapeutic exploitation of cAMP-PKA-signaling in malaria and other diseases caused by apicomplexan parasites.

2 citations

References
More filters
Journal ArticleDOI
TL;DR: It is discovered that 14-3-3 interacts with two residues that are phosphorylated by basophilic kinases and located in the DISC1 (disrupted-in-schizophrenia 1)-interacting region of Ndel1 that is implicated in cognitive disorders.
Abstract: More than 200 phosphorylated 14-3-3-binding sites in the literature were analysed to define 14-3-3 specificities, identify relevant protein kinases, and give insights into how cellular 14-3-3/phosphoprotein networks work. Mode I RXX(pS/pT)XP motifs dominate, although the +2 proline residue occurs in less than half, and LX(R/K)SX(pS/pT)XP is prominent in plant 14-3-3-binding sites. Proline at +1 is rarely reported, and such motifs did not stand up to experimental reanalysis of human Ndel1. Instead, we discovered that 14-3-3 interacts with two residues that are phosphorylated by basophilic kinases and located in the DISC1 (disrupted-in-schizophrenia 1)-interacting region of Ndel1 that is implicated in cognitive disorders. These data conform with the general findings that there are different subtypes of 14-3-3-binding sites that overlap with the specificities of different basophilic AGC (protein kinase A/protein kinase G/protein kinase C family) and CaMK (Ca2+/calmodulin-dependent protein kinase) protein kinases, and a 14-3-3 dimer often engages with two tandem phosphorylated sites, which is a configuration with special signalling, mechanical and evolutionary properties. Thus 14-3-3 dimers can be digital logic gates that integrate more than one input to generate an action, and coincidence detectors when the two binding sites are phosphorylated by different protein kinases. Paired sites are generally located within disordered regions and/or straddle either side of functional domains, indicating how 14-3-3 dimers modulate the conformations and/or interactions of their targets. Finally, 14-3-3 proteins bind to members of several multi-protein families. Two 14-3-3-binding sites are conserved across the class IIa histone deacetylases, whereas other protein families display differential regulation by 14-3-3s. We speculate that 14-3-3 dimers may have contributed to the evolution of such families, tailoring regulatory inputs to different physiological demands.

305 citations

Journal ArticleDOI
TL;DR: A well-defined peptide will be an effective tool for probing the role of 14-3-3 in various signaling pathways, and may lead to the development of high-affinity antagonists with pharmacological applications.
Abstract: The 14-3-3 proteins interact with diverse cellular molecules involved in various signal transduction pathways controlling cell proliferation, transformation, and apoptosis. To aid our investigation of the biological function of 14-3-3 proteins, we have set out to identify high-affinity antagonists. By screening phage display libraries, we have identified a set of peptides which bind 14-3-3 proteins. One of these peptides, termed R18, exhibited a high affinity for different isoforms of 14-3-3 with estimated K(D) values of 7-9 x 10(-)(8) M. Recognition of multiple isoforms of 14-3-3 suggests the targeting of R18 to a structure that is common among 14-3-3 proteins, such as the conserved ligand-binding groove. Indeed, mutations that alter critical residues in the ligand-binding site of 14-3-3 drastically decreased the level of 14-3-3-R18 association. R18 efficiently blocked the binding of 14-3-3 to the kinase Raf-1, a physiological ligand of 14-3-3, and effectively abolished the protective role of 14-3-3 against phosphatase-induced inactivation of Raf-1. The cocrystal structure of R18 in complex with 14-3-3zeta revealed the occupancy of the general binding groove of 14-3-3zeta by R18, explaining the potent inhibitory effect of R18 on 14-3-3-ligand interactions. Such a well-defined peptide will be an effective tool for probing the role of 14-3-3 in various signaling pathways, and may lead to the development of 14-3-3 antagonists with pharmacological applications.

301 citations

Journal ArticleDOI
TL;DR: The model that 14-3-3, through binding to Bad and other ligands, is critical for cell survival signaling is supported, with data support the model that difopein enhances the ability of cisplatin to kill cells.

296 citations

Journal ArticleDOI
TL;DR: The X-ray crystal structures of all human 14-3-3 proteins bound to peptides have now been solved and structural comparisons between isoforms are used as a framework for discussion of ligand binding by 14- 3-3 as well as the mechanisms through which post-translational modification of the different isoforms alters their function.

275 citations

Journal ArticleDOI
TL;DR: This review discusses the latest data on the role of different 14-3-3 isotypes, the interaction of 14- 3-3 proteins with Raf, Cdc25, and various integrin family members, and the likelihood that 14-2-3 protein could be useful therapeutic targets in the treatment of human disease.

255 citations