scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Molecular imprinting: perspectives and applications

18 Apr 2016-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 45, Iss: 8, pp 2137-2211
TL;DR: This work proposes to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs.
Abstract: Molecular imprinting technology (MIT), often described as a method of making a molecular lock to match a molecular key, is a technique for the creation of molecularly imprinted polymers (MIPs) with tailor-made binding sites complementary to the template molecules in shape, size and functional groups. Owing to their unique features of structure predictability, recognition specificity and application universality, MIPs have found a wide range of applications in various fields. Herein, we propose to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs. The fundamentals of MIPs involving essential elements, preparation procedures and characterization methods are briefly outlined. Smart MIT for MIPs is especially highlighted including ingenious MIT (surface imprinting, nanoimprinting, etc.), special strategies of MIT (dummy imprinting, segment imprinting, etc.) and stimuli-responsive MIT (single/dual/multi-responsive technology). By virtue of smart MIT, new formatted MIPs gain popularity for versatile applications, including sample pretreatment/chromatographic separation (solid phase extraction, monolithic column chromatography, etc.) and chemical/biological sensing (electrochemical sensing, fluorescence sensing, etc.). Finally, we propose the remaining challenges and future perspectives to accelerate the development of MIT, and to utilize it for further developing versatile MIPs with a wide range of applications (650 references).
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review on the development and state of the art of colorimetric and fluorometric sensor arrays is presented and the various chemometric and statistical analyses of high-dimensional data are presented and critiqued in reference to their use in chemical sensing.
Abstract: A comprehensive review on the development and state of the art of colorimetric and fluorometric sensor arrays is presented Chemical sensing aims to detect subtle changes in the chemical environment by transforming relevant chemical or physical properties of molecular or ionic species (ie, analytes) into an analytically useful output Optical arrays based on chemoresponsive colorants (dyes and nanoporous pigments) probe the chemical reactivity of analytes, rather than their physical properties (eg, mass) The chemical specificity of the olfactory system does not come from specific receptors for specific analytes (eg, the traditional lock-and-key model of substrate-enzyme interactions), but rather olfaction makes use of pattern recognition of the combined response of several hundred olfactory receptors In a similar fashion, arrays of chemoresponsive colorants provide high-dimensional data from the color or fluorescence changes of the dyes in these arrays as they are exposed to analytes This provides chemical sensing with high sensitivity (often down to parts per billion levels), impressive discrimination among very similar analytes, and exquisite fingerprinting of extremely similar mixtures over a wide range of analyte types, in both the gas and liquid phases Design of both sensor arrays and instrumentation for their analysis are discussed In addition, the various chemometric and statistical analyses of high-dimensional data (including hierarchical cluster analysis (HCA), principal component analysis (PCA), linear discriminant analysis (LDA), support vector machines (SVMs), and artificial neural networks (ANNs)) are presented and critiqued in reference to their use in chemical sensing A variety of applications are also discussed, including personal dosimetry of toxic industrial chemical, detection of explosives or accelerants, quality control of foods and beverages, biosensing intracellularly, identification of bacteria and fungi, and detection of cancer and disease biomarkers

639 citations

Journal ArticleDOI
TL;DR: Electrochemical biosensors for pathogen detection are broadly reviewed in terms of transduction elements, biorecognition elements, electrochemical techniques, and biosensor performance.

406 citations

Journal ArticleDOI
TL;DR: A panoramic view of current MIPs for both microorganism and mammalian cell recognition is provided, implying that MIP-based synthetic receptors are approaching to be perfectly functioning replicates of their natural counterparts.
Abstract: Molecularly imprinted polymers (MIPs) have now earned the reputation as “artificial receptors” or “plastic antibodies”. As the mimics of natural receptors, MIPs are reminiscent of some basic functions of natural receptors in living systems, e.g., the ability to interact with or recognize cells. The latest decade has witnessed a great advance in MIPs from simple molecular extraction to efficient cell recognition, implying that MIP-based synthetic receptors are approaching to be perfectly functioning replicates of their natural counterparts. With the most emerging development in molecular imprinting, MIP-mediated cell recognition has now shown great promise in cell biology research, theranostics and regenerative medicine. This tutorial review provides a panoramic view of current MIPs for both microorganism and mammalian cell recognition. The most representative developments of MIP-mediated cell recognition, from initial imprinting strategies to eventual bio-related applications, are highlighted.

337 citations

Journal ArticleDOI
TL;DR: Electroanalysis as chemical sensors in solution, gas phase, and chiral molecules for conducting polymers applications is focused exclusively on energy, use in environmental remediation, and adsorption of pollutants.
Abstract: Conducting polymers (CPs), thanks to their unique properties, structures made on-demand, new composite mixtures, and possibility of deposit on a surface by chemical, physical, or electrochemical methodologies, have shown in the last years a renaissance and have been widely used in important fields of chemistry and materials science. Due to the extent of the literature on CPs, this review, after a concise introduction about the interrelationship between electrochemistry and conducting polymers, is focused exclusively on the following applications: energy (energy storage devices and solar cells), use in environmental remediation (anion and cation trapping, electrocatalytic reduction/oxidation of pollutants on CP based electrodes, and adsorption of pollutants) and finally electroanalysis as chemical sensors in solution, gas phase, and chiral molecules. This review is expected to be comprehensive, authoritative, and useful to the chemical community interested in CPs and their applications.

319 citations

Journal ArticleDOI
01 Apr 2019-Talanta
TL;DR: The present study suggested promising perspectives of water-compatible eco-friendly DMIP based MSPE-HPLC method for highly effective sample pretreatment and targeted analytes determination in complicated matrices.

294 citations


Cites background from "Molecular imprinting: perspectives ..."

  • ...Meanwhile, MIPs face to some major drawbacks [14], for example, especially while acrylamide used as template during traditional MIPs preparation and subsequently the synthesized MIPs applied as sorbent during extraction process....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C), an approach called click chemistry is defined, enabled, and constrained by a handful of nearly perfect "springloaded" reactions.
Abstract: Examination of nature's favorite molecules reveals a striking preference for making carbon-heteroatom bonds over carbon-carbon bonds-surely no surprise given that carbon dioxide is nature's starting material and that most reactions are performed in water. Nucleic acids, proteins, and polysaccharides are condensation polymers of small subunits stitched together by carbon-heteroatom bonds. Even the 35 or so building blocks from which these crucial molecules are made each contain, at most, six contiguous C-C bonds, except for the three aromatic amino acids. Taking our cue from nature's approach, we address here the development of a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C), an approach we call "click chemistry". Click chemistry is at once defined, enabled, and constrained by a handful of nearly perfect "spring-loaded" reactions. The stringent criteria for a process to earn click chemistry status are described along with examples of the molecular frameworks that are easily made using this spartan, but powerful, synthetic strategy.

9,069 citations

Journal ArticleDOI
TL;DR: The authors proposed a reversible additive-fragmentation chain transfer (RAFT) method for living free-radical polymerization, which can be used with a wide range of monomers and reaction conditions and in each case it provides controlled molecular weight polymers with very narrow polydispersities.
Abstract: mechanism involves Reversible Addition-Fragmentation chain Transfer, and we have designated the process the RAFT polymerization. What distinguishes RAFT polymerization from all other methods of controlled/living free-radical polymerization is that it can be used with a wide range of monomers and reaction conditions and in each case it provides controlled molecular weight polymers with very narrow polydispersities (usually <1.2; sometimes <1.1). Living polymerization processes offer many benefits. These include the ability to control molecular weight and polydispersity and to prepare block copolymers and other polymers of complex architecturesmaterials which are not readily synthesized using other methodologies. Therefore, one can understand the current drive to develop a truly effective process which would combine the virtues of living polymerization with versatility and convenience of free-radical polymerization.2-4 However, existing processes described under the banner “living free-radical polymerization” suffer from a number of disadvantages. In particular, they may be applicable to only a limited range of monomers, require reagents that are expensive or difficult to remove, require special polymerization conditions (e.g. high reaction temperatures), and/or show sensitivity to acid or protic monomers. These factors have provided the impetus to search for new and better methods. There are three principal mechanisms that have been put forward to achieve living free-radical polymerization.2,5 The first is polymerization with reversible termination by coupling. Currently, the best example in this class is alkoxyamine-initiated or nitroxidemediated polymerization as first described by Rizzardo et al.6,7 and recently exploited by a number of groups in syntheses of narrow polydispersity polystyrene and related materials.4,8 The second mechanism is radical polymerization with reversible termination by ligand transfer to a metal complex (usually abbreviated as ATRP).9,10 This method has been successfully applied to the polymerization of various acrylic and styrenic monomers. The third mechanism for achieving living character is free-radical polymerization with reversible chain transfer (also termed degenerative chain transfer2). A simplified mechanism for this process is shown in

4,561 citations

Journal ArticleDOI
TL;DR: A simple, fast, and inexpensive method for the determination of pesticide residues in fruits and vegetables is introduced and effectively removes many polar matrix components, such as organic acids, certain polar pigments, and sugars, to some extent from the food extracts.
Abstract: A simple, fast, and inexpensive method for the determination of pesticide residues in fruits and vegetables is introduced. The procedure involves initial single-phase extraction of 10 g sample with 10 mL acetonitrile, followed by liquid-liquid partitioning formed by addition of 4 g anhydrous MgSO4 plus 1 g NaCl. Removal of residual water and cleanup are performed simultaneously by using a rapid procedure called dispersive solid-phase extraction (dispersive-SPE), in which 150 mg anhydrous MgSO4 and 25 mg primary secondary amine (PSA) sorbent are simply mixed with 1 mL acetonitrile extract. The dispersive-SPE with PSA effectively removes many polar matrix components, such as organic acids, certain polar pigments, and sugars, to some extent from the food extracts. Gas chromatography/mass spectrometry (GC/MS) is then used for quantitative and confirmatory analysis of GC-amenable pesticides. Recoveries between 85 and 101% (mostly > 95%) and repeatabilities typically < 5% have been achieved for a wide range of fortified pesticides, including very polar and basic compounds such as methamidophos, acephate, omethoate, imazalil, and thiabendazole. Using this method, a single chemist can prepare a batch of 6 previously chopped samples in < 30 min with approximately 1 dollar (U.S.) of materials per sample.

4,376 citations