scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Molecular network design

12 Sep 1991-Nature (Nature Publishing Group)-Vol. 353, Iss: 6340, pp 124-124
About: This article is published in Nature.The article was published on 1991-09-12 and is currently open access. It has received 943 citations till now. The article focuses on the topics: Network architecture & Network planning and design.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: On the bicentenary of the publication of Poisson's Traité de Mécanique, the continuing relevance of Poissons's ratio in the understanding of the mechanical characteristics of modern materials is reviewed.
Abstract: In comparing a material's resistance to distort under mechanical load rather than to alter in volume, Poisson's ratio offers the fundamental metric by which to compare the performance of any material when strained elastically. The numerical limits are set by ½ and -1, between which all stable isotropic materials are found. With new experiments, computational methods and routes to materials synthesis, we assess what Poisson's ratio means in the contemporary understanding of the mechanical characteristics of modern materials. Central to these recent advances, we emphasize the significance of relationships outside the elastic limit between Poisson's ratio and densification, connectivity, ductility and the toughness of solids; and their association with the dynamic properties of the liquids from which they were condensed and into which they melt.

1,625 citations


Additional excerpts

  • ...Materials with negative Poisson's ratio are called 'auxetic...

    [...]

Journal ArticleDOI
TL;DR: A review of recent theoretical and experimental works related to mechanics and mechanical properties of 2D materials can be found in this article, where the authors show that there is a continual growth of interest in the mechanics of other two-dimensional materials beyond graphene.

829 citations

Journal ArticleDOI
TL;DR: In this paper, a theoretical model was developed for predicting the elastic constants of honeycombs based on the deformation of the honeycomb cells by flexure, stretching and hinging, which can be used to derive expressions for the tensile moduli, shear moduli and Poisson's ratios.

804 citations

Journal ArticleDOI
27 Apr 1995-Nature
TL;DR: In this article, the construction of open, hinged networks from molecular building blocks is described, and the resulting networks are homeotypic with the honeycomb-like A1B2 and the hinge-like ThSi2 phases.
Abstract: THE field of supramolecular chemistry has advanced to a stage at which it is possible to select building blocks that will self-assemble into structures with specific network topologies1–3. This makes possible the rational design and synthesis of molecular solids with potentially interesting properties. Here we report the construction of open, hinged networks from molecular building blocks. This class of materials has been predicted to exhibit unusual mechanical properties, including auxetic behaviour (negative Poisson's ratio) and negative coefficients of thermal expansion4–6. Our approach relies on the notion that rigid organic molecules of high symmetry will adopt one of only a few possible structures when linked via hydrogen bonds or coordination to metals7–9. We use trigonal lig-ands to make networks joined at the vertices by metal ions; the resulting networks are homeotypic10 with the honeycomb-like A1B2 and the hinge-like ThSi2 phases. The hinge-like network has channels of inner diameter 15 A, within which included molecules can be exchanged while the framework remains intact. We have not yet determined whether this material is auxetic.

802 citations

Journal ArticleDOI
TL;DR: Negative Poisson's ratio behavior has been uncovered in cellular solids that comprise a solid matrix with a square array of circular voids that results from an elastic instability, which induces a pattern transformation and excellent quantitative agreement is found between calculation and experiment.
Abstract: Negative Poisson's ratio behavior has been uncovered in cellular solids that comprise a solid matrix with a square array of circular voids The simplicity of the fabrication implies robust behavior, which is relevant over a range of scales The behavior results from an elastic instability, which induces a pattern transformation and excellent quantitative agreement is found between calculation and experiment

668 citations

References
More filters
Book
01 Jan 1934
TL;DR: The theory of the slipline field is used in this article to solve the problem of stable and non-stressed problems in plane strains in a plane-strain scenario.
Abstract: Chapter 1: Stresses and Strains Chapter 2: Foundations of Plasticity Chapter 3: Elasto-Plastic Bending and Torsion Chapter 4: Plastic Analysis of Beams and Frames Chapter 5: Further Solutions of Elasto-Plastic Problems Chapter 6: Theory of the Slipline Field Chapter 7: Steady Problems in Plane Strain Chapter 8: Non-Steady Problems in Plane Strain

20,724 citations

Book
01 Aug 1988
TL;DR: The linear elasticity of anisotropic cellular solids is studied in this article. But the authors focus on the design of sandwich panels with foam cores and do not consider the properties of the materials.
Abstract: 1. Introduction 2. The structure of cellular solids 3. Material properties 4. The mechanics of honeycombs 5. The mechanics of foams: basic results 6. The mechanics of foams refinements 7. Thermal, electrical and acoustic properties of foams 8. Energy absorption in cellular materials 9. The design of sandwich panels with foam cores 10. Wood 11. Cancellous bone 12. Cork 13. Sources, suppliers and property data Appendix: the linear-elasticity of anisotropic cellular solids.

8,946 citations

Book
01 Jan 1951
TL;DR: The equilibrium of rods and plates Elastic waves Dislocations Thermal conduction and viscosity in solids Mechanics of liquid crystals Index as discussed by the authors The equilibrium of rod and plate elastic waves Elastic waves
Abstract: Fundamental equations The equilibrium of rods and plates Elastic waves Dislocations Thermal conduction and viscosity in solids Mechanics of liquid crystals Index.

6,229 citations

Journal ArticleDOI
27 Feb 1987-Science
TL;DR: A novel foam structure is presented, which exhibits a negative Poisson's ratio, and such a material expands laterally when stretched, in contrast to ordinary materials.
Abstract: A novel foam structure is presented, which exhibits a negative Poisson's ratio. Such a material expands laterally when stretched, in contrast to ordinary materials.

2,871 citations