scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Molecular regulation of angiogenesis and lymphangiogenesis.

01 Jun 2007-Nature Reviews Molecular Cell Biology (Nature Publishing Group)-Vol. 8, Iss: 6, pp 464-478
TL;DR: The angiogenic growth of blood vessels and lymphatic vessels coordinates several biological processes such as cell proliferation, guided migration, differentiation and cell–cell communication.
Abstract: Blood vessels and lymphatic vessels form extensive networks that are essential for the transport of fluids, gases, macromolecules and cells within the large and complex bodies of vertebrates. Both of these vascular structures are lined with endothelial cells that integrate functionally into different organs, acquire tissue-specific specialization and retain plasticity; thereby, they permit growth during tissue repair or in disease settings. The angiogenic growth of blood vessels and lymphatic vessels coordinates several biological processes such as cell proliferation, guided migration, differentiation and cell-cell communication.
Citations
More filters
Journal ArticleDOI
16 Sep 2011-Cell
TL;DR: The emerging principles of vascular growth provide exciting new perspectives, the translation of which might overcome the current limitations of pro- and antiangiogenic medicine.

2,278 citations


Cites background from "Molecular regulation of angiogenesi..."

  • ...Arterial and venous ECs possess specific molecular identities (Adams and Alitalo, 2007; Swift and Weinstein, 2009)....

    [...]

  • ...Recent studies provided tremendous insights into fundamental aspects of angiogenesis that have led to amechanistic model of vessel branching (Adams and Alitalo, 2007; Carmeliet and Jain, 2011; Eilken and Adams, 2010; Phng and Gerhardt, 2009)....

    [...]

  • ...Subsequent vessel sprouting (angiogenesis) creates a network that remodels into arteries and veins (Adams and Alitalo, 2007) (Figure 1A)....

    [...]

  • ...Recent studies provided tremendous insights into fundamental aspects of angiogenesis that have led to amechanistic model of vessel branching (Adams and Alitalo, 2007; Carmeliet and Jain, 2011; Eilken and Adams, 2010; Phng and Gerhardt, 2009)....

    [...]

Journal ArticleDOI
TL;DR: The focus of this Commentary will be on identifying and describing the fundamental features of 3D cell culture systems that influence cell structure, adhesion, mechanotransduction and signaling in response to soluble factors, which regulate overall cellular function in ways that depart dramatically from traditional 2D culture formats.
Abstract: Summary Much of our understanding of the biological mechanisms that underlie cellular functions, such as migration, differentiation and force-sensing has been garnered from studying cells cultured on two-dimensional (2D) glass or plastic surfaces. However, more recently the cell biology field has come to appreciate the dissimilarity between these flat surfaces and the topographically complex, three-dimensional (3D) extracellular environments in which cells routinely operate in vivo. This has spurred substantial efforts towards the development of in vitro 3D biomimetic environments and has encouraged much cross-disciplinary work among biologists, material scientists and tissue engineers. As we move towards more-physiological culture systems for studying fundamental cellular processes, it is crucial to define exactly which factors are operative in 3D microenvironments. Thus, the focus of this Commentary will be on identifying and describing the fundamental features of 3D cell culture systems that influence cell structure, adhesion, mechanotransduction and signaling in response to soluble factors, which – in turn – regulate overall cellular function in ways that depart dramatically from traditional 2D culture formats. Additionally, we will describe experimental scenarios in which 3D culture is particularly relevant, highlight recent advances in materials engineering for studying cell biology, and discuss examples where studying cells in a 3D context provided insights that would not have been observed in traditional 2D systems.

1,438 citations


Cites background from "Molecular regulation of angiogenesi..."

  • ...…are essential for the regulation of fundamental cell processes, such as cell migration and homing (Kay et al., 2008), angiogenic sprouting (Adams and Alitalo, 2007; Otrock et al., 2007) and tissue patterning during early development (Gurdon and Bourillot, 2001; Saha and Schaffer, 2006;…...

    [...]

  • ..., 2008), angiogenic sprouting (Adams and Alitalo, 2007; Otrock et al., 2007) and tissue patterning during early development (Gurdon and Bourillot, 2001; Saha and Schaffer, 2006; Manjón et al....

    [...]

Journal ArticleDOI
TL;DR: The Tie receptors and their angiopoietin (Ang) ligands have been identified as the second vascular tissue-specific receptor Tyr kinase system and provide unique insights into the functions of this vascular signalling system.
Abstract: Angiogenesis, the growth of blood vessels, is a fundamental biological process that controls embryonic development and is also involved in numerous life-threatening human diseases. Much work in the field of angiogenesis research has centred on the vascular endothelial growth factor (VEGF)-VEGF receptor system. The Tie receptors and their angiopoietin (Ang) ligands have been identified as the second vascular tissue-specific receptor Tyr kinase system. Ang-Tie signalling is essential during embryonic vessel assembly and maturation, and functions as a key regulator of adult vascular homeostasis. The structural characteristics and the spatio-temporal regulation of the expression of receptors and ligands provide unique insights into the functions of this vascular signalling system.

1,255 citations

Journal ArticleDOI
27 May 2010-Nature
TL;DR: It is shown with genetic experiments in mouse and zebrafish that ephrin-B2, a transmembrane ligand for Eph receptor tyrosine kinases, promotes sprouting behaviour and motility in the angiogenic endothelium, and shows that full VEGFR3 signalling is coupled to receptor internalization.
Abstract: In development, tissue regeneration or certain diseases, angiogenic growth leads to the expansion of blood vessels and the lymphatic vasculature. This involves endothelial cell proliferation as well as angiogenic sprouting, in which a subset of cells, termed tip cells, acquires motile, invasive behaviour and extends filopodial protrusions. Although it is already appreciated that angiogenesis is triggered by tissue-derived signals, such as vascular endothelial growth factor (VEGF) family growth factors, the resulting signalling processes in endothelial cells are only partly understood. Here we show with genetic experiments in mouse and zebrafish that ephrin-B2, a transmembrane ligand for Eph receptor tyrosine kinases, promotes sprouting behaviour and motility in the angiogenic endothelium. We link this pro-angiogenic function to a crucial role of ephrin-B2 in the VEGF signalling pathway, which we have studied in detail for VEGFR3, the receptor for VEGF-C. In the absence of ephrin-B2, the internalization of VEGFR3 in cultured cells and mutant mice is defective, which compromises downstream signal transduction by the small GTPase Rac1, Akt and the mitogen-activated protein kinase Erk. Our results show that full VEGFR3 signalling is coupled to receptor internalization. Ephrin-B2 is a key regulator of this process and thereby controls angiogenic and lymphangiogenic growth.

1,046 citations

Journal ArticleDOI
TL;DR: The evidence implicating integrins as a family of fundamental regulators of angiogenesis and lymphangiogenesis is reviewed, and several integrin-targeted therapeutic agents are currently in clinical trials for cancer therapy.
Abstract: Blood vessels promote tumour growth, and both blood and lymphatic vessels facilitate tumour metastasis by serving as conduits for the transport of tumour cells to new sites. Angiogenesis and lymphangiogenesis are regulated by integrins, which are members of a family of cell surface receptors whose ligands are extracellular matrix proteins and immunoglobulin superfamily molecules. Select integrins promote endothelial cell migration and survival during angiogenesis and lymphangiogenesis, whereas other integrins promote pro-angiogenic macrophage trafficking to tumours. Several integrin-targeted therapeutic agents are currently in clinical trials for cancer therapy. Here, we review the evidence implicating integrins as a family of fundamental regulators of angiogenesis and lymphangiogenesis.

969 citations


Cites background from "Molecular regulation of angiogenesi..."

  • ...New blood vessels in tumours can grow by sprouting from pre-existing vessels or by recruitment of rare, circulating bone marrow-derived endothelial progenitor cell...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Vascular endothelial growth factor (VEGF) is a key regulator of physiological angiogenesis during embryogenesis, skeletal growth and reproductive functions and is implicated in pathologicalAngiogenesis associated with tumors, intraocular neovascular disorders and other conditions.
Abstract: Vascular endothelial growth factor (VEGF) is a key regulator of physiological angiogenesis during embryogenesis, skeletal growth and reproductive functions. VEGF has also been implicated in pathological angiogenesis associated with tumors, intraocular neovascular disorders and other conditions. The biological effects of VEGF are mediated by two receptor tyrosine kinases (RTKs), VEGFR-1 and VEGFR-2, which differ considerably in signaling properties. Non-signaling co-receptors also modulate VEGF RTK signaling. Currently, several VEGF inhibitors are undergoing clinical testing in several malignancies. VEGF inhibition is also being tested as a strategy for the prevention of angiogenesis, vascular leakage and visual loss in age-related macular degeneration.

8,942 citations

Journal ArticleDOI
07 Jan 2005-Science
TL;DR: Emerging evidence supporting an alternative hypothesis is reviewed—that certain antiangiogenic agents can also transiently “normalize” the abnormal structure and function of tumor vasculature to make it more efficient for oxygen and drug delivery.
Abstract: Solid tumors require blood vessels for growth, and many new cancer therapies are directed against the tumor vasculature. The widely held view is that these antiangiogenic therapies should destroy the tumor vasculature, thereby depriving the tumor of oxygen and nutrients. Here, I review emerging evidence supporting an alternative hypothesis-that certain antiangiogenic agents can also transiently "normalize" the abnormal structure and function of tumor vasculature to make it more efficient for oxygen and drug delivery. Drugs that induce vascular normalization can alleviate hypoxia and increase the efficacy of conventional therapies if both are carefully scheduled. A better understanding of the molecular and cellular underpinnings of vascular normalization may ultimately lead to more effective therapies not only for cancer but also for diseases with abnormal vasculature, as well as regenerative medicine, in which the goal is to create and maintain a functionally normal vasculature.

4,952 citations

Journal ArticleDOI
TL;DR: Molecular insights into the formation of new blood vessels are being generated at a rapidly increasing pace, offering new therapeutic opportunities that are currently being evaluated.
Abstract: Blood vessels constitute the first organ in the embryo and form the largest network in our body but, sadly, are also often deadly. When dysregulated, the formation of new blood vessels contributes to numerous malignant, ischemic, inflammatory, infectious and immune disorders. Molecular insights into these processes are being generated at a rapidly increasing pace, offering new therapeutic opportunities that are currently being evaluated.

4,137 citations

Journal ArticleDOI
TL;DR: It is shown here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts.
Abstract: Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. It controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells.

2,737 citations

Journal ArticleDOI
TL;DR: The maturation of nascent vasculature, formed by vasculogenesis or angiogenesis, requires recruitment of mural cells, generation of an extracellular matrix and specialization of the vessel wall for structural support and regulation of vessel function.
Abstract: The maturation of nascent vasculature, formed by vasculogenesis or angiogenesis, requires recruitment of mural cells, generation of an extracellular matrix and specialization of the vessel wall for structural support and regulation of vessel function. In addition, the vascular network must be organized so that all the parenchymal cells receive adequate nutrients. All of these processes are orchestrated by physical forces as well as by a constellation of ligands and receptors whose spatio-temporal patterns of expression and concentration are tightly regulated. Inappropriate levels of these physical forces or molecules produce an abnormal vasculature--a hallmark of various pathologies. Normalization of the abnormal vasculature can facilitate drug delivery to tumors and formation of a mature vasculature can help realize the promise of therapeutic angiogenesis and tissue engineering.

2,458 citations