scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Molecular rotors--fluorescent biosensors for viscosity and flow.

23 May 2007-Organic and Biomolecular Chemistry (The Royal Society of Chemistry)-Vol. 5, Iss: 11, pp 1669-1678
TL;DR: Molecular rotors are emerging as new biosensors for both bulk and local microviscosity, and for flow and fluid shear stress on a microscopic scale and with real-time response.
Abstract: Viscosity is a measure of the resistance of a fluid against gradients in flow (shear rate). Both flow and viscosity play an important role in all biological systems from the microscopic (e.g., cellular) to the systemic level. Many methods to measure viscosity and flow have drawbacks, such as the tedious and time-consuming measurement process, expensive instrumentation, or the restriction to bulk sample sizes. Fluorescent environment-sensitive dyes are known to show high sensitivity and high spatial and temporal resolution. Molecular rotors are a group of fluorescent molecules that form twisted intramolecular charge transfer (TICT) states upon photoexcitation and therefore exhibit two competing deexcitation pathways: fluorescence emission and non-radiative deexcitation from the TICT state. Since TICT formation is viscosity-dependent, the emission intensity of molecular rotors depends on the solvent's viscosity. Furthermore, shear-stress dependency of the emission intensity was recently described. Although the photophysical processes are widely explored, the practical application of molecular rotors as sensors for viscosity and the fluid flow introduce additional challenges. Intensity-based measurements are influenced by fluid optical properties and dye concentration, and solvent–dye interaction requires calibration of the measurement system to a specific solvent. Ratiometric dyes and measurement systems help solve these challenges. In addition, the combination of molecular rotors with specific recognition groups allows them to target specific sites, for example the cell membrane or cytoplasm. Molecular rotors are therefore emerging as new biosensors for both bulk and local microviscosity, and for flow and fluid shear stress on a microscopic scale and with real-time response.
Citations
More filters
Journal ArticleDOI
TL;DR: The lifetime of a photophysical process is the time required by a population of N electronically excited molecules to be reduced by a factor of e via the loss of energy through fluorescence and other non-radiative processes and the average length of time τ is called the mean lifetime, or simply lifetime.
Abstract: When a molecule absorbs a photon of appropriate energy, a chain of photophysical events ensues, such as internal conversion or vibrational relaxation (loss of energy in the absence of light emission), fluorescence, intersystem crossing (from singlet state to a triplet state) and phosphorescence, as shown in the Jablonski diagram for organic molecules (Fig. 1). Each of the processes occurs with a certain probability, characterized by decay rate constants (k). It can be shown that the average length of time τ for the set of molecules to decay from one state to another is reciprocally proportional to the rate of decay: τ = 1/k. This average length of time is called the mean lifetime, or simply lifetime. It can also be shown that the lifetime of a photophysical process is the time required by a population of N electronically excited molecules to be reduced by a factor of e. Correspondingly, the fluorescence lifetime is the time required by a population of excited fluorophores to decrease exponentially to N/e via the loss of energy through fluorescence and other non-radiative processes. The lifetime of photophycal processes vary significantly from tens of femotoseconds for internal conversion1,2 to nanoseconds for fluorescence and microseconds or seconds for phosphorescence.1 Open in a separate window Figure 1 Jablonski diagram and a timescale of photophysical processes for organic molecules.

1,829 citations

Journal ArticleDOI
TL;DR: In this critical review, recent work on singlet oxygen is summarized, focusing primarily on systems that involve light.
Abstract: Singlet oxygen, O2(a1Δg), the lowest excited electronic state of molecular oxygen, has been known to the scientific community for ∼80 years. It has a characteristic chemistry that sets it apart from the triplet ground state of molecular oxygen, O2(X3Σ−g), and is important in fields that range from atmospheric chemistry and materials science to biology and medicine. For such a “mature citizen”, singlet oxygen nevertheless remains at the cutting-edge of modern science. In this critical review, recent work on singlet oxygen is summarized, focusing primarily on systems that involve light. It is clear that there is indeed still something new under the sun (243 references).

929 citations

Journal ArticleDOI
TL;DR: Boron dipyrromethene (BODIPY) derivatives 1 and 2 consisting of donor and acceptor units with dual photoresponses to solvent polarity and luminogen aggregation are developed through taking advantage of twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) processes as discussed by the authors.
Abstract: Boron dipyrromethene (BODIPY) derivatives 1 and 2 consisting of donor and acceptor units with dual photoresponses to solvent polarity and luminogen aggregation are developed through taking advantage of twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) processes. In nonpolar solvents, the locally excited (LE) states of the BODIPY luminogens emit intense green lights. Increasing solvent polarity brings the luminogens from the LE state to the TICT state, causing a large bathochromic shift in the emission color but a dramatic decrease in the emission efficiency. The red emission is greatly boosted by aggregate formation or AIE effect: addition of large amounts of water into the solutions of 1 and 2 in the polar solvents causes the luminogens to aggregate supramolecularly and to emit efficiently. The emission can be enhanced by increasing solvent viscosity and decreasing solution temperature, indicating that the AIE effect is caused by the restriction of the intramolecular ro...

794 citations

Journal ArticleDOI
TL;DR: Overall, solvatochromic and fluorogenic probes enable background-free bioimaging in wash-free conditions as well as quantitative analysis when combined with advanced microscopy, such as fluorescence lifetime (FLIM) and ratiometric imaging.
Abstract: ConspectusFluorescent environment-sensitive probes are specially designed dyes that change their fluorescence intensity (fluorogenic dyes) or color (e.g., solvatochromic dyes) in response to change in their microenvironment polarity, viscosity, and molecular order. The studies of the past decade, including those of our group, have shown that these molecules become universal tools in fluorescence sensing and imaging. In fact, any biomolecular interaction or change in biomolecular organization results in modification of the local microenvironment, which can be directly monitored by these types of probes. In this Account, the main examples of environment-sensitive probes are summarized according to their design concepts. Solvatochromic dyes constitute a large class of environment-sensitive probes which change their color in response to polarity. Generally, they are push–pull dyes undergoing intramolecular charge transfer. Emission of their highly polarized excited state shifts to the red in more polar solven...

737 citations

Journal ArticleDOI
TL;DR: A review of the latest developments in TICT research from a materials chemistry point of view can be found in this paper, where the authors present a compact overview of the current state-of-the-art.
Abstract: Twisted intramolecular charge transfer (TICT) is an electron transfer process that occurs upon photoexcitation in molecules that usually consist of a donor and acceptor part linked by a single bond. Following intramolecular twisting, the TICT state returns to the ground state either through red-shifted emission or by nonradiative relaxation. The emission properties are potentially environment-dependent, which makes TICT-based fluorophores ideal sensors for solvents, (micro)viscosity, and chemical species. Recently, several TICT-based materials have been discovered to become fluorescent upon aggregation. Furthermore, various recent studies in organic optoelectronics, non-linear optics and solar energy conversions utilised the concept of TICT to modulate the electronic-state mixing and coupling on charge transfer states. This review presents a compact overview of the latest developments in TICT research, from a materials chemistry point of view.

728 citations

References
More filters
Journal ArticleDOI
18 Feb 1972-Science
TL;DR: Results strongly indicate that the bivalent antibodies produce an aggregation of the surface immunoglobulin molecules in the plane of the membrane, which can occur only if the immunoglOBulin molecules are free to diffuse in the membrane.
Abstract: A fluid mosaic model is presented for the gross organization and structure of the proteins and lipids of biological membranes. The model is consistent with the restrictions imposed by thermodynamics. In this model, the proteins that are integral to the membrane are a heterogeneous set of globular molecules, each arranged in an amphipathic structure, that is, with the ionic and highly polar groups protruding from the membrane into the aqueous phase, and the nonpolar groups largely buried in the hydrophobic interior of the membrane. These globular molecules are partially embedded in a matrix of phospholipid. The bulk of the phospholipid is organized as a discontinuous, fluid bilayer, although a small fraction of the lipid may interact specifically with the membrane proteins. The fluid mosaic structure is therefore formally analogous to a two-dimensional oriented solution of integral proteins (or lipoproteins) in the viscous phospholipid bilayer solvent. Recent experiments with a wide variety of techniqes and several different membrane systems are described, all of which abet consistent with, and add much detail to, the fluid mosaic model. It therefore seems appropriate to suggest possible mechanisms for various membrane functions and membrane-mediated phenomena in the light of the model. As examples, experimentally testable mechanisms are suggested for cell surface changes in malignant transformation, and for cooperative effects exhibited in the interactions of membranes with some specific ligands. Note added in proof: Since this article was written, we have obtained electron microscopic evidence (69) that the concanavalin A binding sites on the membranes of SV40 virus-transformed mouse fibroblasts (3T3 cells) are more clustered than the sites on the membranes of normal cells, as predicted by the hypothesis represented in Fig. 7B. T-here has also appeared a study by Taylor et al. (70) showing the remarkable effects produced on lymphocytes by the addition of antibodies directed to their surface immunoglobulin molecules. The antibodies induce a redistribution and pinocytosis of these surface immunoglobulins, so that within about 30 minutes at 37 degrees C the surface immunoglobulins are completely swept out of the membrane. These effects do not occur, however, if the bivalent antibodies are replaced by their univalent Fab fragments or if the antibody experiments are carried out at 0 degrees C instead of 37 degrees C. These and related results strongly indicate that the bivalent antibodies produce an aggregation of the surface immunoglobulin molecules in the plane of the membrane, which can occur only if the immunoglobulin molecules are free to diffuse in the membrane. This aggregation then appears to trigger off the pinocytosis of the membrane components by some unknown mechanism. Such membrane transformations may be of crucial importance in the induction of an antibody response to an antigen, as well as iv other processes of cell differentiation.

7,790 citations

Journal ArticleDOI
TL;DR: The theoretical basis and some practical guidelines for simple, rigorous analysis of FPR experiments are presented and some model experiments on aqueous solutions of rhodamine 6G are described.

2,594 citations

Journal ArticleDOI
TL;DR: In this paper, the existence of two excited species differing in polarity and in the orientation of the N(CH 3 ) 2 group has been attributed to the presence of an excimer.

724 citations

Book
01 Jan 1984

491 citations