scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Monitoring of the Eyjafjallajökull volcanic aerosol plume over the Iberian Peninsula by means of four EARLINET lidar stations

TL;DR: In this article, the authors performed intensively over the Iberian Peninsula (IP) during the eruption of the Eyjafjallajokull volcano (Iceland) in April-May 2010.
Abstract: . Lidar and sun-photometer measurements were performed intensively over the Iberian Peninsula (IP) during the eruption of the Eyjafjallajokull volcano (Iceland) in April–May 2010. The volcanic plume reached all the IP stations for the first time on 5 May 2010. A thorough study of the event was conducted for the period 5–8 May. Firstly, the spatial and temporal evolution of the plume was described by means of lidar and sun-photometer measurements supported with backtrajectories. The volcanic aerosol layers observed over the IP were rather thin (

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The European Aerosol Research Lidar Network (EARLINET) as mentioned in this paper was founded as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and tempo-ral distribution of aerosols on a continental scale.
Abstract: The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and tempo- ral distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive col- lection of ground-based data for the aerosol vertical distribu- tion over Europe. This paper gives an overview of the network's main de- velopments since 2000 and introduces the dedicated EAR- LINET special issue, which reports on the present innova- tive and comprehensive technical solutions and scientific re- sults related to the use of advanced lidar remote sensing tech- niques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 sta- tions in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multi- wavelength Raman lidar stations in Europe. The develop- ments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the net- work towards a more sustainable observing system, with an increase in the observing capability and a reduction of oper- ational costs. Consequently, EARLINET data have already been ex- tensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from vol- canic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite commu- nity, linking the research community with the operational world, with the aim of establishing of the atmospheric part of the European component of the integrated global observ- ing system.

417 citations

Journal ArticleDOI
TL;DR: PollyNET as mentioned in this paper consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols.
Abstract: . A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/ . The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Angstrom exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

192 citations

Journal ArticleDOI
TL;DR: In this paper, the polarization lidar photometer networking (POLIPHON) method introduced to separate coarse-mode and fine-mode particle properties of Eyjafjallajokull volcanic aerosols in 2010 is extended to cover Saharan dust events as well.
Abstract: . The polarization lidar photometer networking (POLIPHON) method introduced to separate coarse-mode and fine-mode particle properties of Eyjafjallajokull volcanic aerosols in 2010 is extended to cover Saharan dust events as well. Furthermore, new volcanic dust observations performed after the Grimsvotn volcanic eruptions in 2011 are presented. The retrieval of particle mass concentrations requires mass-specific extinction coefficients. Therefore, a review of recently published mass-specific extinction coefficients for Saharan dust and volcanic dust is given. Case studies of four different scenarios corroborate the applicability of the profiling technique: (a) Saharan dust outbreak to central Europe, (b) Saharan dust plume mixed with biomass-burning smoke over Cape Verde, and volcanic aerosol layers originating from (c) the Eyjafjallajokull eruptions in 2010 and (d) the Grimsvotn eruptions in 2011. Strong differences in the vertical aerosol layering, aerosol mixing, and optical properties are observed for the different volcanic events.

130 citations

Journal ArticleDOI
TL;DR: In this article, the authors show the four-dimensional (4-D) distribution of the Eyjafjallajokull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April-26 May 2010).
Abstract: . The eruption of the Icelandic volcano Eyjafjallajokull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajokull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at http://www.earlinet.org . A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org . During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May), material emitted by the Eyjafjallajokull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.

91 citations

Journal ArticleDOI
TL;DR: In this article, the authors report on ground-based lidar observations of the same event from every continent in the Northern Hemisphere, taking advantage of the synergy between global lidar networks such as EARLINET, MPLNET and NDACC with independent lidar groups and satellite CALIPSO.
Abstract: Nabro volcano (13.37°N, 41.70°E) in Eritrea erupted on 13 June 2011 generating a layer of sulfate aerosols that persisted in the stratosphere for months. For the first time we report on ground-based lidar observations of the same event from every continent in the Northern Hemisphere, taking advantage of the synergy between global lidar networks such as EARLINET, MPLNET and NDACC with independent lidar groups and satellite CALIPSO to track the evolution of the stratospheric aerosol layer in various parts of the globe. The globally averaged aerosol optical depth (AOD) due to the stratospheric volcanic aerosol layers was of the order of 0.018 ± 0.009 at 532 nm, ranging from 0.003 to 0.04. Compared to the total column AOD from the available collocated AERONET stations, the stratospheric contribution varied from 2% to 23% at 532 nm.

73 citations

References
More filters
Journal ArticleDOI
TL;DR: The operation and philosophy of the monitoring system, the precision and accuracy of the measuring radiometers, a brief description of the processing system, and access to the database are discussed.
Abstract: The concept and description of a remote sensing aerosol monitoring network initiated by NASA, developed to support NASA, CNES, and NASDA’s Earth satellite systems under the name AERONET and expanded by national and international collaboration, is described. Recent development of weather-resistant automatic sun and sky scanning spectral radiometers enable frequent measurements of atmospheric aerosol optical properties and precipitable water at remote sites. Transmission of automatic measurements via the geostationary satellites GOES and METEOSATS’ Data Collection Systems allows reception and processing in near real-time from approximately 75% of the Earth’s surface and with the expected addition of GMS, the coverage will increase to 90% in 1998. NASA developed a UNIX-based near real-time processing, display and analysis system providing internet access to the emerging global database. Information on the system is available on the project homepage, http://spamer.gsfc.nasa.gov . The philosophy of an open access database, centralized processing and a user-friendly graphical interface has contributed to the growth of international cooperation for ground-based aerosol monitoring and imposes a standardization for these measurements. The system’s automatic data acquisition, transmission, and processing facilitates aerosol characterization on local, regional, and global scales with applications to transport and radiation budget studies, radiative transfer-modeling and validation of satellite aerosol retrievals. This article discusses the operation and philosophy of the monitoring system, the precision and accuracy of the measuring radiometers, a brief description of the processing system, and access to the database.

6,535 citations

Journal ArticleDOI
TL;DR: Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a two-wavelength polarization lidar that performs global profiling of aerosols and clouds in the troposphere and lower stratosphere as discussed by the authors.
Abstract: The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a two-wavelength polarization lidar that performs global profiling of aerosols and clouds in the troposphere and lower stratosphere. CALIOP is the primary instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, which has flown in formation with the NASA A-train constellation of satellites since May 2006. The global, multiyear dataset obtained from CALIOP provides a new view of the earth’s atmosphere and will lead to an improved understanding of the role of aerosols and clouds in the climate system. A suite of algorithms has been developed to identify aerosol and cloud layers and to retrieve a variety of optical and microphysical properties. CALIOP represents a significant advance over previous space lidars, and the algorithms that have been developed have many innovative aspects to take advantage of its capabilities. This paper provides a brief overview of the CALIPSO mission, the CA...

1,833 citations


"Monitoring of the Eyjafjallajökull ..." refers background in this paper

  • ...It is worth noting that the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar flying on board CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) (Winker et al., 2009) made an overpass over the eastern IP on 6 May around 02:40 UTC and also detected very thin aerosol plumes identified as dust and polluted dust – in which categories volcanic aerosols do fit – up to 10 km....

    [...]

  • ...…Lidar with Orthogonal Polarization) lidar flying on board CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) (Winker et al., 2009) made an overpass over the eastern IP on 6 May around 02:40 UTC and also detected very thin aerosol plumes identified as dust and…...

    [...]

Journal ArticleDOI
TL;DR: In this article, a new inversion concept for simultaneously retrieving aerosol size distribution, complex refractive index, and single scattering albedo from spectral measurements of direct and diffuse radiation was proposed.
Abstract: Sensitivity studies are conducted regarding aerosol optical property retrieval from radiances measured by ground-based Sun-sky scanning radiometers of the Aerosol Robotic Network (AERONET). These studies focus on testing a new inversion concept for simultaneously retrieving aerosol size distribution, complex refractive index, and single- scattering albedo from spectral measurements of direct and diffuse radiation. The perturbations of the inversion resulting from random errors, instrumental offsets, and known uncertainties in the atmospheric radiation model are analyzed. Sun or sky channel miscalibration, inaccurate azimuth angle pointing during sky radiance measurements, and inaccuracy in accounting for surface reflectance are considered as error sources. The effects of these errors on the characterization of three typical and optically distinct aerosols with bimodal size distributions (weakly absorbing water-soluble aerosol, absorbing biomass-burning aerosol, and desert dust) are considered. The aerosol particles are assumed in the retrieval to be polydispersed homogeneous spheres with the same complex refractive index. Therefore we also examined how inversions with such an assumption bias the retrievals in the case of nonspherical dust aerosols and in the case of externally or internally mixed spherical particles with different refractive indices. The analysis shows successful retrieval of all aerosol characteristics (size distribution, complex refractive index, and single-scattering albedo), provided the inversion includes the data combination of spectral optical depth together with sky radiances in the full solar almucantar (with angular coverage of scattering angles up to 100" or more). The retrieval accuracy is acceptable for most remote sensing applications even in the presence of rather strong systematic or random uncertainties in the measurements. The major limitations relate to the characterization of low optical depth situations for all aerosol types, where high relative errors may occur in the direct radiation measurements of aerosol optical depth. Also, the results of tests indicate that a decrease of angular coverage of scattering (scattering angles of 75" or less) in the sky radiance results in the loss of practical information about refractive index. Accurate azimuth angle pointing is critical for the characterization of dust. Scattering by nonspherical dust particles requires special analysis, whereby approximation of the aerosol by spheres allows us to derive single-scattering albedo by inverting spectral optical depth together with sky radiances in the full solar almucantar. Inverting sky radiances measured in the first 40" scattering angle only, where nonspherical effects are minor, results in accurate retrievals of aerosol size distributions of nonspherical particles.

1,562 citations


"Monitoring of the Eyjafjallajökull ..." refers background in this paper

  • ...Even though the AERONET AOT uncertainty is known to be ≤ ±0.01 for wavelengths greater than 440 nm (Holben et al., 1998; Dubovik et al., 2000), here the AOT at 500 nm is expressed with three digits in order to minimize differences due to truncation in the calculation of the fine and coarse mode…...

    [...]

  • ...01 for wavelengths greater than 440 nm (Holben et al., 1998; Dubovik et al., 2000), here the AOT at 500 nm is expressed with three digits in order to minimize differences due to truncation in the calculation of the fine and coarse mode fractions....

    [...]

Journal ArticleDOI
TL;DR: A restatement of the more general solution of Fernald et al.l which is also applicable to mildly turbid atmospheres where both aerosol and molecular scatterers must be considered in the analysis.
Abstract: There have been many discussions of solutions to the lidar equation for elastic scattering (e.g., Fernald et al.,' Klett, 2 Davis, and Collis and Russell ). Most of these are simply variations on Hitschfeld and Bordan's5 solution for meteorological radars. Klett 2 recently restated this solution in a very convenient form for the analysis of lidar observations collected in very turbid atmospheres. His paper has prompted a restatement of the more general solution of Fernald et al.l which is also applicable to mildly turbid atmospheres where both aerosol and molecular scatterers must be considered in the analysis. This has led to a simple numerical scheme for the computer analysis of lidar measurements. The lidar equation for two distinct classes of scatters (Fernald et al.') is

1,558 citations


"Monitoring of the Eyjafjallajökull ..." refers methods in this paper

  • ...Phys., 12, 3115–3130, 2012 www.atmos-chem-phys.net/12/3115/2012/ All measurements were inverted using the two-component elastic lidar inversion algorithm (Fernald, 1984; Sasano and Nakane, 1984; Klett, 1985) and a constant lidar ratio of 50 sr....

    [...]

  • ...All measurements were inverted using the two-component elastic lidar inversion algorithm (Fernald, 1984; Sasano and Nakane, 1984; Klett, 1985) and a constant lidar ratio of 50 sr....

    [...]

Related Papers (5)