scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Monocytes and Macrophages, Targets of Severe Acute Respiratory Syndrome Coronavirus 2: The Clue for Coronavirus Disease 2019 Immunoparalysis.

TL;DR: SARS-CoV-2 infection of macrophages induces a specific M2 transcriptional program characterized by the upregulation of M2-type molecules as mentioned in this paper. But their infection is abortive.
Abstract: Background Coronavirus disease 2019 (COVID-19) clinical expression is pleiomorphic, severity is related to age and comorbidities such as diabetes and hypertension, and pathophysiology involves aberrant immune activation and lymphopenia. We wondered if the myeloid compartment was affected during COVID-19 and if monocytes and macrophages could be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods Monocytes and monocyte-derived macrophages (MDMs) from COVID-19 patients and controls were infected with SARS-CoV-2 and extensively investigated with immunofluorescence, viral RNA extraction and quantification, and total RNA extraction followed by reverse-transcription quantitative polymerase chain reaction using specific primers, supernatant cytokines (interleukins 6, 10, and 1β; interferon-β; transforming growth factor-β1, and tumor necrosis factor-α), and flow cytometry. The effect of M1- vs M2-type or no polarization prior to infection was assessed. Results SARS-CoV-2 efficiently infected monocytes and MDMs, but their infection is abortive. Infection was associated with immunoregulatory cytokines secretion and the induction of a macrophagic specific transcriptional program characterized by the upregulation of M2-type molecules. In vitro polarization did not account for permissivity to SARS-CoV-2, since M1- and M2-type MDMs were similarly infected. In COVID-19 patients, monocytes exhibited lower counts affecting all subsets, decreased expression of HLA-DR, and increased expression of CD163, irrespective of severity. Conclusions SARS-CoV-2 drives monocytes and macrophages to induce host immunoparalysis for the benefit of COVID-19 progression.SARS-CoV-2 infection of macrophages induces a specific M2 transcriptional program. In Covid-19 patients, monocyte subsets were decreased associated with up-expression of the immunoregulatory molecule CD163 suggesting that SARS-CoV-2 drives immune system for the benefit of Covid-19 disease progression.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the authors reviewed the incidence of COVID-19-associated invasive fungal infections caused by these fungi in low-, middle- and high-income countries, evaluating the epidemiology, clinical risk factors, predisposing features of the host environment and immunological mechanisms that underlie the pathogenesis of these co-infections, set the scene for future research and development of clinical guidance.
Abstract: Coronavirus disease 2019 (COVID-19)-associated invasive fungal infections are an important complication in a substantial number of critically ill, hospitalized patients with COVID-19. Three groups of fungal pathogens cause co-infections in COVID-19: Aspergillus, Mucorales and Candida species, including Candida auris. Here we review the incidence of COVID-19-associated invasive fungal infections caused by these fungi in low-, middle- and high-income countries. By evaluating the epidemiology, clinical risk factors, predisposing features of the host environment and immunological mechanisms that underlie the pathogenesis of these co-infections, we set the scene for future research and development of clinical guidance.

91 citations

Journal ArticleDOI
12 May 2021-Vaccine
TL;DR: The pathogenesis of post-COVID syndrome is multi-factorial and more than one mechanism may be implicated in several clinical manifestations, including immune-mediated vascular dysfunction, thromboembolism, and nervous system dysfunction.

85 citations

Journal ArticleDOI
TL;DR: In this article, SARS-CoV-2 antibodies bound to Fc receptors on macrophages and mast cells may represent two different mechanisms for antibody-dependent enhancement in patients.
Abstract: COVID-19 (SARS-CoV-2) disease severity and stages varies from asymptomatic, mild flu-like symptoms, moderate, severe, critical, and chronic disease. COVID-19 disease progression include lymphopenia, elevated proinflammatory cytokines and chemokines, accumulation of macrophages and neutrophils in lungs, immune dysregulation, cytokine storms, acute respiratory distress syndrome (ARDS), etc. Development of vaccines to severe acute respiratory syndrome (SARS), Middle East Respiratory Syndrome coronavirus (MERS-CoV), and other coronavirus has been difficult to create due to vaccine induced enhanced disease responses in animal models. Multiple betacoronaviruses including SARS-CoV-2 and SARS-CoV-1 expand cellular tropism by infecting some phagocytic cells (immature macrophages and dendritic cells) via antibody bound Fc receptor uptake of virus. Antibody-dependent enhancement (ADE) may be involved in the clinical observation of increased severity of symptoms associated with early high levels of SARS-CoV-2 antibodies in patients. Infants with multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19 may also have ADE caused by maternally acquired SARS-CoV-2 antibodies bound to mast cells. ADE risks associated with SARS-CoV-2 has implications for COVID-19 and MIS-C treatments, B-cell vaccines, SARS-CoV-2 antibody therapy, and convalescent plasma therapy for patients. SARS-CoV-2 antibodies bound to mast cells may be involved in MIS-C and multisystem inflammatory syndrome in adults (MIS-A) following initial COVID-19 infection. SARS-CoV-2 antibodies bound to Fc receptors on macrophages and mast cells may represent two different mechanisms for ADE in patients. These two different ADE risks have possible implications for SARS-CoV-2 B-cell vaccines for subsets of populations based on age, cross-reactive antibodies, variabilities in antibody levels over time, and pregnancy. These models place increased emphasis on the importance of developing safe SARS-CoV-2 T cell vaccines that are not dependent upon antibodies.

83 citations

Journal ArticleDOI
TL;DR: The role of macrophages in COVID-19 is focused on, as pathogenesis of the new coronavirus infection, especially in cases complicated by ARDS, largely depends on macrophage phenotypes and functionalities.
Abstract: Macrophages are cells that mediate both innate and adaptive immunity reactions, playing a major role in both physiological and pathological processes. Systemic SARS-CoV-2-associated complications include acute respiratory distress syndrome (ARDS), disseminated intravascular coagulation syndrome, edema, and pneumonia. These are predominantly effects of massive macrophage activation that collectively can be defined as macrophage activation syndrome. In this review we focus on the role of macrophages in COVID-19, as pathogenesis of the new coronavirus infection, especially in cases complicated by ARDS, largely depends on macrophage phenotypes and functionalities. We describe participation of monocytes, monocyte-derived and resident lung macrophages in SARS-CoV-2-associated ARDS and discuss possible utility of cell therapies for its treatment, notably the use of reprogrammed macrophages with stable pro- or anti-inflammatory phenotypes.

60 citations

Journal ArticleDOI
TL;DR: In this article, the role of key metabolic pathways that can regulate severe acute respiratory syndrome coronavirus-2 reproduction and their association with disease severity was investigated using patient-derived multiomics data and in vitro infection assays.

54 citations

References
More filters
Journal ArticleDOI
TL;DR: O surto do novo coronavírus (COVID-19) em Wuhan, China, iniciado em dezembro de 2019, evoluiu para se tornar uma pandemia global A.

6,850 citations

Journal ArticleDOI
TL;DR: A web tool called ClustVis that aims to have an intuitive user interface for the Principal Component Analysis and heatmap plots and is freely available at http://biit.cs.ut.ee/clustvis/.
Abstract: The Principal Component Analysis (PCA) is a widely used method of reducing the dimensionality of high-dimensional data, often followed by visualizing two of the components on the scatterplot. Although widely used, the method is lacking an easy-to-use web interface that scientists with little programming skills could use to make plots of their own data. The same applies to creating heatmaps: it is possible to add conditional formatting for Excel cells to show colored heatmaps, but for more advanced features such as clustering and experimental annotations, more sophisticated analysis tools have to be used. We present a web tool called ClustVis that aims to have an intuitive user interface. Users can upload data from a simple delimited text file that can be created in a spreadsheet program. It is possible to modify data processing methods and the final appearance of the PCA and heatmap plots by using drop-down menus, text boxes, sliders etc. Appropriate defaults are given to reduce the time needed by the user to specify input parameters. As an output, users can download PCA plot and heatmap in one of the preferred file formats. This web server is freely available at http://biit.cs.ut.ee/clustvis/.

2,293 citations

Journal ArticleDOI
TL;DR: The current understanding of how a dysregulated immune response may cause lung immunopathology leading to deleterious clinical manifestations after pathogenic hCoV infections is reviewed.
Abstract: Human coronaviruses (hCoVs) can be divided into low pathogenic and highly pathogenic coronaviruses. The low pathogenic CoVs infect the upper respiratory tract and cause mild, cold-like respiratory illness. In contrast, highly pathogenic hCoVs such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) predominantly infect lower airways and cause fatal pneumonia. Severe pneumonia caused by pathogenic hCoVs is often associated with rapid virus replication, massive inflammatory cell infiltration and elevated pro-inflammatory cytokine/chemokine responses resulting in acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Recent studies in experimentally infected animal strongly suggest a crucial role for virus-induced immunopathological events in causing fatal pneumonia after hCoV infections. Here we review the current understanding of how a dysregulated immune response may cause lung immunopathology leading to deleterious clinical manifestations after pathogenic hCoV infections.

1,984 citations

Journal ArticleDOI
TL;DR: Single-cell transcriptome and T cell receptor analysis of bronchoalveolar lavage fluid suggests enrichment of proinflammatory macrophages in patients with severe COVID-19 and the presence of clonally expanded CD8 + T cells in Patients with moderate CO VID-19.
Abstract: Respiratory immune characteristics associated with Coronavirus Disease 2019 (COVID-19) severity are currently unclear. We characterized bronchoalveolar lavage fluid immune cells from patients with varying severity of COVID-19 and from healthy people by using single-cell RNA sequencing. Proinflammatory monocyte-derived macrophages were abundant in the bronchoalveolar lavage fluid from patients with severe COVID-9. Moderate cases were characterized by the presence of highly clonally expanded CD8+ T cells. This atlas of the bronchoalveolar immune microenvironment suggests potential mechanisms underlying pathogenesis and recovery in COVID-19.

1,918 citations

Related Papers (5)