scispace - formally typeset
Journal ArticleDOI

Monotone Operators and the Proximal Point Algorithm

R. Tyrrell Rockafellar
- 01 Aug 1976 - 
- Vol. 14, Iss: 5, pp 877-898
Reads0
Chats0
TLDR
In this paper, the proximal point algorithm in exact form is investigated in a more general form where the requirement for exact minimization at each iteration is weakened, and the subdifferential $\partial f$ is replaced by an arbitrary maximal monotone operator T.
Abstract
For the problem of minimizing a lower semicontinuous proper convex function f on a Hilbert space, the proximal point algorithm in exact form generates a sequence $\{ z^k \} $ by taking $z^{k + 1} $ to be the minimizes of $f(z) + ({1 / {2c_k }})\| {z - z^k } \|^2 $, where $c_k > 0$. This algorithm is of interest for several reasons, but especially because of its role in certain computational methods based on duality, such as the Hestenes-Powell method of multipliers in nonlinear programming. It is investigated here in a more general form where the requirement for exact minimization at each iteration is weakened, and the subdifferential $\partial f$ is replaced by an arbitrary maximal monotone operator T. Convergence is established under several criteria amenable to implementation. The rate of convergence is shown to be “typically” linear with an arbitrarily good modulus if $c_k $ stays large enough, in fact superlinear if $c_k \to \infty $. The case of $T = \partial f$ is treated in extra detail. Applicati...

read more

Citations
More filters
Book

Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers

TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.
Journal ArticleDOI

A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging

TL;DR: A first-order primal-dual algorithm for non-smooth convex optimization problems with known saddle-point structure can achieve O(1/N2) convergence on problems, where the primal or the dual objective is uniformly convex, and it can show linear convergence, i.e. O(ωN) for some ω∈(0,1), on smooth problems.
Book

Proximal Algorithms

TL;DR: The many different interpretations of proximal operators and algorithms are discussed, their connections to many other topics in optimization and applied mathematics are described, some popular algorithms are surveyed, and a large number of examples of proxiesimal operators that commonly arise in practice are provided.
Book

Prediction, learning, and games

TL;DR: In this paper, the authors provide a comprehensive treatment of the problem of predicting individual sequences using expert advice, a general framework within which many related problems can be cast and discussed, such as repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems.
Journal ArticleDOI

On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators

TL;DR: This paper shows, by means of an operator called asplitting operator, that the Douglas—Rachford splitting method for finding a zero of the sum of two monotone operators is a special case of the proximal point algorithm, which allows the unification and generalization of a variety of convex programming algorithms.
Related Papers (5)