scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

More is Less: A More Complicated Network with Less Inference Complexity

TL;DR: A novel and general network structure towards accelerating the inference process of convolutional neural networks, which is more complicated in network structure yet with less inference complexity.
Abstract: In this paper, we present a novel and general network structure towards accelerating the inference process of convolutional neural networks, which is more complicated in network structure yet with less inference complexity. The core idea is to equip each original convolutional layer with another low-cost collaborative layer (LCCL), and the element-wise multiplication of the ReLU outputs of these two parallel layers produces the layer-wise output. The combined layer is potentially more discriminative than the original convolutional layer, and its inference is faster for two reasons: 1) the zero cells of the LCCL feature maps will remain zero after element-wise multiplication, and thus it is safe to skip the calculation of the corresponding high-cost convolution in the original convolutional layer, 2) LCCL is very fast if it is implemented as a 1*1 convolution or only a single filter shared by all channels. Extensive experiments on the CIFAR-10, CIFAR-100 and ILSCRC-2012 benchmarks show that our proposed network structure can accelerate the inference process by 32% on average with negligible performance drop.

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI
08 Sep 2018
TL;DR: This paper proposes AutoML for Model Compression (AMC) which leverages reinforcement learning to efficiently sample the design space and can improve the model compression quality and achieves state-of-the-art model compression results in a fully automated way without any human efforts.
Abstract: Model compression is an effective technique to efficiently deploy neural network models on mobile devices which have limited computation resources and tight power budgets. Conventional model compression techniques rely on hand-crafted features and require domain experts to explore the large design space trading off among model size, speed, and accuracy, which is usually sub-optimal and time-consuming. In this paper, we propose AutoML for Model Compression (AMC) which leverages reinforcement learning to efficiently sample the design space and can improve the model compression quality. We achieved state-of-the-art model compression results in a fully automated way without any human efforts. Under 4\(\times \) FLOPs reduction, we achieved 2.7% better accuracy than the hand-crafted model compression method for VGG-16 on ImageNet. We applied this automated, push-the-button compression pipeline to MobileNet-V1 and achieved a speedup of 1.53\(\times \) on the GPU (Titan Xp) and 1.95\(\times \) on an Android phone (Google Pixel 1), with negligible loss of accuracy.

1,086 citations


Cites background from "More is Less: A More Complicated Ne..."

  • ...Extensive works [20, 19, 34, 12, 18, 17] have been done on accelerating neural networks by compression....

    [...]

Proceedings ArticleDOI
Yang He1, Ping Liu1, Ziwei Wang, Zhilan Hu2, Yi Yang1 
15 Jun 2019
TL;DR: He et al. as discussed by the authors proposed a filter pruning via geometric median (FPGM) method to compress CNN models by pruning filters with redundancy, rather than those with relatively less importance.
Abstract: Previous works utilized “smaller-norm-less-important” criterion to prune filters with smaller norm values in a convolutional neural network In this paper, we analyze this norm-based criterion and point out that its effectiveness depends on two requirements that are not always met: (1) the norm deviation of the filters should be large; (2) the minimum norm of the filters should be small To solve this problem, we propose a novel filter pruning method, namely Filter Pruning via Geometric Median (FPGM), to compress the model regardless of those two requirements Unlike previous methods, FPGM compresses CNN models by pruning filters with redundancy, rather than those with“relatively less” importance When applied to two image classification benchmarks, our method validates its usefulness and strengths Notably, on CIFAR-10, FPGM reduces more than 52% FLOPs on ResNet-110 with even 269% relative accuracy improvement Moreover, on ILSVRC-2012, FPGM reduces more than 42% FLOPs on ResNet-101 without top-5 accuracy drop, which has advanced the state-of-the-art Code is publicly available on GitHub: https://githubcom/he-y/filter-pruning-geometric-median

698 citations

Book ChapterDOI
08 Sep 2018
TL;DR: This work introduces SkipNet, a modified residual network, that uses a gating network to selectively skip convolutional blocks based on the activations of the previous layer, and proposes a hybrid learning algorithm that combines supervised learning and reinforcement learning to address the challenges of non-differentiable skipping decisions.
Abstract: While deeper convolutional networks are needed to achieve maximum accuracy in visual perception tasks, for many inputs shallower networks are sufficient. We exploit this observation by learning to skip convolutional layers on a per-input basis. We introduce SkipNet, a modified residual network, that uses a gating network to selectively skip convolutional blocks based on the activations of the previous layer. We formulate the dynamic skipping problem in the context of sequential decision making and propose a hybrid learning algorithm that combines supervised learning and reinforcement learning to address the challenges of non-differentiable skipping decisions. We show SkipNet reduces computation by \(30-90\%\) while preserving the accuracy of the original model on four benchmark datasets and outperforms the state-of-the-art dynamic networks and static compression methods. We also qualitatively evaluate the gating policy to reveal a relationship between image scale and saliency and the number of layers skipped.

481 citations


Cites background from "More is Less: A More Complicated Ne..."

  • ...ng the gating modules) parameterized by " and g "{0,1}N . The overall objective is deÞned as min J (")=min E x E g L ! (g ,x ) =min E x E g # L (öy (x ,F ! ,g ),y) ! # N $N i=1 R i % , (5) where R i =(1! gi)C i is the reward of each gating module. The constant C i is the cost of executing F i and the term (1 ! gi)C i reßects the reward associated with skipping F i. In our experiments, ...

    [...]

Proceedings ArticleDOI
15 Jun 2019
TL;DR: In this paper, a differentiable sampler over the directed acyclic graph (DAG) is developed to avoid traversing all the possibilities of the sub-graphs, which can be learnable and optimized by the validation loss after training the sampled architecture.
Abstract: Conventional neural architecture search (NAS) approaches are usually based on reinforcement learning or evolutionary strategy, which take more than 1000 GPU hours to find a good model on CIFAR-10. We propose an efficient NAS approach, which learns the searching approach by gradient descent. Our approach represents the search space as a directed acyclic graph (DAG). This DAG contains thousands of sub-graphs, each of which indicates a kind of neural architecture. To avoid traversing all the possibilities of the sub-graphs, we develop a differentiable sampler over the DAG. This sampler is learnable and optimized by the validation loss after training the sampled architecture. In this way, our approach can be trained in an end-to-end fashion by gradient descent, named Gradient-based search using Differentiable Architecture Sampler (GDAS). In experiments, we can finish one searching procedure in four GPU hours on CIFAR-10, and the discovered model obtains a test error of 2.82% with only 2.5M parameters, which is on par with the state-of-the-art.

446 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: This paper proposes an approach to exploiting unlabeled tracklets by gradually but steadily improving the discriminative capability of the Convolutional Neural Network feature representation via stepwise learning.
Abstract: We focus on the one-shot learning for video-based person re-Identification (re-ID). Unlabeled tracklets for the person re-ID tasks can be easily obtained by preprocessing, such as pedestrian detection and tracking. In this paper, we propose an approach to exploiting unlabeled tracklets by gradually but steadily improving the discriminative capability of the Convolutional Neural Network (CNN) feature representation via stepwise learning. We first initialize a CNN model using one labeled tracklet for each identity. Then we update the CNN model by the following two steps iteratively: 1. sample a few candidates with most reliable pseudo labels from unlabeled tracklets; 2. update the CNN model according to the selected data. Instead of the static sampling strategy applied in existing works, we propose a progressive sampling method to increase the number of the selected pseudo-labeled candidates step by step. We systematically investigate the way how we should select pseudo-labeled tracklets into the training set to make the best use of them. Notably, the rank-1 accuracy of our method outperforms the state-of-the-art method by 21.46 points (absolute, i.e., 62.67% vs. 41.21%) on the MARS dataset, and 16.53 points on the DukeMTMC-VideoReID dataset1.

348 citations


Cites methods from "More is Less: A More Complicated Ne..."

  • ...CNN models [3, 4, 9, 11, 30, 31] are usually used as the function φ....

    [...]

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations


"More is Less: A More Complicated Ne..." refers background in this paper

  • ...Recently, the Batch Normalization (BN) [17] is proposed to improve the network performance and increase the convergence speed during training by stabilizing the distribution and reducing the internal covariate shift of input data....

    [...]