scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Morphology and cellular-traction of fibroblasts on 2D silk-fibroin hydrogel substrates

TL;DR: Results suggest that surface-stiffness of SF-hydrogel, rather than nature of surface-ligand, regulates both cellular morphology and cellular traction stresses.
Abstract: Development of clinically amenable bio-implants with silk-fibroin (SF) necessitates characterization of cellular-traction generated between cells and the substrate. However, studies on the biomecha...
Citations
More filters
Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper describe varied building blocks of silk at different levels used in biomedical field and their effective extraction and reconstruction strategies, and present recent discoveries and research progresses on how these functional regenerated silk fibroin (RSF) biomaterials used in advanced biomedical applications, especially in the fields of cell-material interactions, soft tissue regeneration, and flexible bioelectronic devices.
Abstract: Silk fibroin has become a promising biomaterial owing to its remarkable mechanical property, biocompatibility, biodegradability, and sufficient supply. However, it is difficult to directly construct materials with other formats except for yarn, fabric and nonwoven based on natural silk. A promising bioinspired strategy is firstly extracting desired building blocks of silk, then reconstructing them into functional regenerated silk fibroin (RSF) materials with controllable formats and structures. This strategy could give it excellent processability and modifiability, thus well meet the diversified needs in biomedical applications. Recently, to engineer RSF materials with properties similar to or beyond the hierarchical structured natural silk, novel extraction and reconstruction strategies have been developed. In this review, we seek to describe varied building blocks of silk at different levels used in biomedical field and their effective extraction and reconstruction strategies. This review also present recent discoveries and research progresses on how these functional RSF biomaterials used in advanced biomedical applications, especially in the fields of cell-material interactions, soft tissue regeneration, and flexible bioelectronic devices. Finally, potential study and application for future opportunities, and current challenges for these bioinspired strategies and corresponding usage were also comprehensively discussed. In this way, it aims to provide valuable references for the design and modification of novel silk biomaterials, and further promote the high-quality-utilization of silk or other biopolymers.

17 citations

Journal ArticleDOI
TL;DR: A review of the effects of mechanosignalling in the field of cellular mechanobiology can be found in this paper , where the authors discuss some of the interesting works wherein specific alteration of the mechanical properties of the substrates would lead to fate determination of stem cells into various differentiated cells such as osteoblasts, adipocytes, tenocytes, cardiomyocytes, and neurons, and how these properties are being utilized for the development of organoids.
Abstract: Sensing the mechanical properties of the substrates or the matrix by the cells and the tissues, the subsequent downstream responses at the cellular, nuclear and epigenetic levels and the outcomes are beginning to get unraveled more recently. There have been various instances where researchers have established the underlying connection between the cellular mechanosignalling pathways and cellular physiology, cellular differentiation, and also tissue pathology. It has been now accepted that mechanosignalling, alone or in combination with classical pathways, could play a significant role in fate determination, development, and organization of cells and tissues. Furthermore, as mechanobiology is gaining traction, so do the various techniques to ponder and gain insights into the still unraveled pathways. This review would briefly discuss some of the interesting works wherein it has been shown that specific alteration of the mechanical properties of the substrates would lead to fate determination of stem cells into various differentiated cells such as osteoblasts, adipocytes, tenocytes, cardiomyocytes, and neurons, and how these properties are being utilized for the development of organoids. This review would also cover various techniques that have been developed and employed to explore the effects of mechanosignalling, including imaging of mechanosensing proteins, atomic force microscopy (AFM), quartz crystal microbalance with dissipation measurements (QCMD), traction force microscopy (TFM), microdevice arrays, Spatio-temporal image analysis, optical tweezer force measurements, mechanoscanning ion conductance microscopy (mSICM), acoustofluidic interferometric device (AID) and so forth. This review would provide insights to the researchers who work on exploiting various mechanical properties of substrates to control the cellular and tissue functions for tissue engineering and regenerative applications, and also will shed light on the advancements of various techniques that could be utilized to unravel the unknown in the field of cellular mechanobiology.
References
More filters
Journal ArticleDOI
TL;DR: It is shown that cellular traction force cannot be determined by cell area alone and that underlying substrate stiffness is a significant contributor to traction force generation.
Abstract: Cells generate traction stresses against their substrate during adhesion and migration, and traction stresses are used in part by the cell to sense the substrate. While it is clear that traction stresses, substrate stiffness, and cell area are related, it is unclear whether or how area and substrate stiffness affect force generation in cells. Moreover, multiple studies have investigated traction stresses of single cells, but few have focused on forces exerted by cells in contact, which more closely mimics the in vivo environment. Here, cellular traction forces were measured where cell area was modulated by ligand density or substrate stiffness. We coupled these measurements with a multilinear regression model to show that both projected cell area and underlying substrate stiffness are significant predictors of traction forces in endothelial cells, and interestingly, substrate ligand density is not. We further explored the effect of cell–cell contact on the interplay between cell area, substrate stiffness, and force generation and found that again both area and stiffness play a significant role in cell force generation. These data indicate that cellular traction force cannot be determined by cell area alone and that underlying substrate stiffness is a significant contributor to traction force generation.

309 citations

Journal ArticleDOI
TL;DR: These new protein‐based elastomeric and degradable hydrogels represent an exciting new biomaterials option, with a unique combination of properties, for tissue engineering and regenerative medicine.
Abstract: Elastomeric, fully degradable and biocompatible biomaterials are rare, with current options presenting significant limitations in terms of ease of functionalization and tunable mechanical and degradation properties. We report a new method for covalently crosslinking tyrosine residues in silk proteins, via horseradish peroxidase and hydrogen peroxide, to generate highly elastic hydrogels with tunable properties. The tunable mechanical properties, gelation kinetics and swelling properties of these new protein polymers, in addition to their ability to withstand shear strains on the order of 100%, compressive strains greater than 70% and display stiffness between 200 - 10,000 Pa, covering a significant portion of the properties of native soft tissues. Molecular weight and solvent composition allowed control of material mechanical properties over several orders of magnitude while maintaining high resilience and resistance to fatigue. Encapsulation of human bone marrow derived mesenchymal stem cells (hMSC) showed long term survival and exhibited cell-matrix interactions reflective of both silk concentration and gelation conditions. Further biocompatibility of these materials were demonstrated with in vivo evaluation. These new protein-based elastomeric and degradable hydrogels represent an exciting new biomaterials option, with a unique combination of properties, for tissue engineering and regenerative medicine.

302 citations

Journal ArticleDOI
TL;DR: This study demonstrates that Silk fibroin as a natural polymer fabricated with glycidyl-methacrylate (Silk-GMA) for DLP 3D printing and promises the fabricated Silk GMA hydrogel using DLP3D printer could be applied to the fields of tissue engineering needing mechanical properties like cartilage regeneration.

238 citations

Journal ArticleDOI
TL;DR: The results reveal the interplay between nonlinear elasticity and viscoelasticity in collagen gels, and highlight the complexity of the ECM mechanics that are likely sensed through cellular mechanotransduction.
Abstract: The extracellular matrix (ECM) is a complex assembly of structural proteins that provides physical support and biochemical signaling to cells in tissues. The mechanical properties of the ECM have been found to play a key role in regulating cell behaviors such as differentiation and malignancy. Gels formed from ECM protein biopolymers such as collagen or fibrin are commonly used for 3D cell culture models of tissue. One of the most striking features of these gels is that they exhibit nonlinear elasticity, undergoing strain stiffening. However, these gels are also viscoelastic and exhibit stress relaxation, with the resistance of the gel to a deformation relaxing over time. Recent studies have suggested that cells sense and respond to both nonlinear elasticity and viscoelasticity of ECM, yet little is known about the connection between nonlinear elasticity and viscoelasticity. Here, we report that, as strain is increased, not only do biopolymer gels stiffen but they also exhibit faster stress relaxation, reducing the timescale over which elastic energy is dissipated. This effect is not universal to all biological gels and is mediated through weak cross-links. Mechanistically, computational modeling and atomic force microscopy (AFM) indicate that strain-enhanced stress relaxation of collagen gels arises from force-dependent unbinding of weak bonds between collagen fibers. The broader effect of strain-enhanced stress relaxation is to rapidly diminish strain stiffening over time. These results reveal the interplay between nonlinear elasticity and viscoelasticity in collagen gels, and highlight the complexity of the ECM mechanics that are likely sensed through cellular mechanotransduction.

221 citations

Journal ArticleDOI
TL;DR: During embryonic development, epidermal basal layer crowding generates local changes in cell shape, cortical tension, and adhesion that initiate differentiation and delamination that generate multilayered tissue.
Abstract: To establish and maintain organ structure and function, tissues need to balance stem cell proliferation and differentiation rates and coordinate cell fate with position. By quantifying and modelling tissue stress and deformation in the mammalian epidermis, we find that this balance is coordinated through local mechanical forces generated by cell division and delamination. Proliferation within the basal stem/progenitor layer, which displays features of a jammed, solid-like state, leads to crowding, thereby locally distorting cell shape and stress distribution. The resulting decrease in cortical tension and increased cell–cell adhesion trigger differentiation and subsequent delamination, reinstating basal cell layer density. After delamination, cells establish a high-tension state as they increase myosin II activity and convert to E-cadherin-dominated adhesion, thereby reinforcing the boundary between basal and suprabasal layers. Our results uncover how biomechanical signalling integrates single-cell behaviours to couple proliferation, cell fate and positioning to generate a multilayered tissue. Mechanics of epidermal differentiation Miroshnikova et al. find that during embryonic development, epidermal basal layer crowding generates local changes in cell shape, cortical tension, and adhesion that initiate differentiation and delamination

206 citations

Trending Questions (1)
Do cells seeded into a hydrogel contract this hydogel via traction forces?

The paper does not directly answer the question about whether cells seeded into a hydrogel contract the hydrogel via traction forces. The paper focuses on the morphology and cellular-traction of fibroblasts on 2D silk-fibroin hydrogel substrates.