scispace - formally typeset
Search or ask a question
Book ChapterDOI

MR Molecular Imaging of Tumor Vasculature and Vascular Targets

TL;DR: This review has focused on developments in the characterization of tumor vasculature with functional and molecular MRI.
Abstract: Tumor angiogenesis and the ability of cancer cells to induce neovasculature continue to be a fascinating area of research. As the delivery network that provides substrates and nutrients, as well as chemotherapeutic agents to cancer cells, but allows cancer cells to disseminate, the tumor vasculature is richly primed with targets and mechanisms that can be exploited for cancer cure or control. The spatial and temporal heterogeneity of tumor vasculature, and the heterogeneity of response to targeting, make noninvasive imaging essential for understanding the mechanisms of tumor angiogenesis, tracking vascular targeting, and detecting the efficacy of antiangiogenic therapies. With its noninvasive characteristics, exquisite spatial resolution and range of applications, magnetic resonance imaging (MRI) techniques have provided a wealth of functional and molecular information on tumor vasculature in applications spanning from “bench to bedside”. The integration of molecular biology and chemistry to design novel imaging probes ensures the continued evolution of the molecular capabilities of MRI. In this review, we have focused on developments in the characterization of tumor vasculature with functional and molecular MRI.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Practical information is provided on the development, implementation, and validation of a DCE-MRI study in the context of a preclinical study (though the authors do frequently refer to clinical studies that are related to these topics).
Abstract: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) consists of the continuous acquisition of images before, during, and after the injection of a contrast agent. DCE-MRI allows for noninvasive evaluation of tumor parameters related to vascular perfusion and permeability and tissue volume fractions, and is frequently employed in both preclinical and clinical investigations. However, the experimental and analytical subtleties of the technique are not frequently discussed in the literature, nor are its relationships to other commonly used quantitative imaging techniques. This review aims to provide practical information on the development, implementation, and validation of a DCE-MRI study in the context of a preclinical study (though we do frequently refer to clinical studies that are related to these topics).

72 citations


Cites background from "MR Molecular Imaging of Tumor Vascu..."

  • ...references [49–51] for discussions of other CAs, including macromolecular CAs....

    [...]

Journal ArticleDOI
TL;DR: The development of a novel tumor vasculature-targeted liposomal nanoprobe by conjugating a human monoclonal antibody, PGN635 that specifically targets PS to polyethylene glycol-coated liposomes is reported, indicating that PS- Targeted Liposomes may provide a useful platform for tumor- targeted delivery of imaging contrast agents or potentially anti-cancer drugs for cancer theranostics.

68 citations

Journal ArticleDOI
TL;DR: It is demonstrated that it is possible to use a single-compartment nanoplatform to achieve both photoacoustic tomography and highly selective tumor destruction at 1064 nm in small animals.
Abstract: Here, we report that polyethylene glycol (PEG)-coated copper(II) sulfide nanoparticles (PEG-CuS NPs) with their peak absorption tuned to 1064 nm could be used both as a contrast agent for photoacoustic tomographic imaging of mouse tumor vasculature and as a mediator for confined photothermolysis of tumor cells in an orthotopic syngeneic 4T1 breast tumor model. PEG-CuS NPs showed stronger photoacoustic signal than hollow gold nanospheres and single-wall carbon nanotubes at 1064 nm. MicroPET imaging of 4T1 tumor-bearing mice showed a gradual accumulation of the NPs in the tumor over time. About 6.5% of injected dose were taken up in each gram of tumor tissue at 24 h after intravenous injection of 64Cu-labeled PEG-CuS NPs. For both photoacoustic imaging and therapeutic studies, nanosecond (ns)-pulsed laser was delivered with Q-switched Nd:YAG at a wavelength of 1064 nm. Unlike conventional photothermal ablation therapy mediated by continuous wave laser with which heat could spread to the surrounding normal tissue, interaction of CuS NPs with short pulsed laser deliver heat rapidly to the treatment volume keeping the thermal damage confined to the target tissues. Our data demonstrated that it is possible to use a single-compartment nanoplatform to achieve both photoacoustic tomography and highly selective tumor destruction at 1064 nm in small animals.

61 citations

Journal ArticleDOI
TL;DR: The development of multiscale models of tumor angiogenesis, new imaging techniques capable of reproducing the 3-D tumor vascular architecture with high fidelity, and the emergence of “image-based models” of tumor blood flow and molecular transport are discussed.
Abstract: The evolution in our understanding of tumor angiogenesis has been the result of pioneering imaging and computational modeling studies spanning the endothelial cell, microvasculature and tissue levels. Many of these primary data on the tumor vasculature are in the form of images from pre-clinical tumor models that provide a wealth of qualitative and quantitative information in many dimensions and across different spatial scales. However, until recently, the visualization of changes in the tumor vasculature across spatial scales remained a challenge due to a lack of techniques for integrating micro- and macroscopic imaging data. Furthermore, the paucity of three-dimensional (3-D) tumor vascular data in conjunction with the challenges in obtaining such data from patients presents a serious hurdle for the development and validation of predictive, multiscale computational models of tumor angiogenesis. In this review, we discuss the development of multiscale models of tumor angiogenesis, new imaging techniques capable of reproducing the 3-D tumor vascular architecture with high fidelity, and the emergence of “image-based models” of tumor blood flow and molecular transport. Collectively, these developments are helping us gain a fundamental understanding of the cellular and molecular regulation of tumor angiogenesis that will benefit the development of new cancer therapies. Eventually, we expect this exciting integration of multiscale imaging and mathematical modeling to have widespread application beyond the tumor vasculature to other diseases involving a pathological vasculature, such as stroke and spinal cord injury.

61 citations

Book ChapterDOI
TL;DR: The purpose in this review is to examine the roles of molecular and functional imaging within the context of the tumor microenvironment, and the feasibility of their applications for precision medicine and theranostics in humans.
Abstract: Morbidity and mortality from cancer and their associated conditions and treatments continue to extract a heavy social and economic global burden despite the transformative advances in science and technology in the twenty-first century. In fact, cancer incidence and mortality are expected to reach pandemic proportions by 2025, and costs of managing cancer will escalate to trillions of dollars. The inability to establish effective cancer treatments arises from the complexity of conditions that exist within tumors, the plasticity and adaptability of cancer cells coupled with their ability to escape immune surveillance, and the co-opted stromal cells and microenvironment that assist cancer cells in survival. Stromal cells, although destroyed together with cancer cells, have an ever-replenishing source that can assist in resurrecting tumors from any residual cancer cells that may survive treatment. The tumor microenvironment landscape is a continually changing landscape, with spatial and temporal heterogeneities that impact and influence cancer treatment outcome. Importantly, the changing landscape of the tumor microenvironment can be exploited for precision medicine and theranostics. Molecular and functional imaging can play important roles in shaping and selecting treatments to match this landscape. Our purpose in this review is to examine the roles of molecular and functional imaging, within the context of the tumor microenvironment, and the feasibility of their applications for precision medicine and theranostics in humans.

57 citations

References
More filters
Journal ArticleDOI
TL;DR: This new capillary growth is even more vigorous and continuous than a similar outgrowth of capillary sprouts observed in 2016 and is likely to be accompanied by neovascularization.
Abstract: THE growth of solid neoplasms is always accompanied by neovascularization. This new capillary growth is even more vigorous and continuous than a similar outgrowth of capillary sprouts observed in f...

9,874 citations

Journal ArticleDOI
TL;DR: For further successful development of this field, promising trends must be identified and exploited, albeit with a clear understanding of the limitations of these approaches.
Abstract: Liposomes — microscopic phospholipid bubbles with a bilayered membrane structure — have received a lot of attention during the past 30 years as pharmaceutical carriers of great potential. More recently, many new developments have been seen in the area of liposomal drugs — from clinically approved products to new experimental applications, with gene delivery and cancer therapy still being the principal areas of interest. For further successful development of this field, promising trends must be identified and exploited, albeit with a clear understanding of the limitations of these approaches.

4,572 citations

Journal ArticleDOI
TL;DR: A theoretical model of blood–brain exchange is developed and a procedure is derived that can be used for graphing multiple-time tissue uptake data and determining whether a unidirectional transfer process was dominant during part or all of the experimental period.
Abstract: A theoretical model of blood-brain exchange is developed and a procedure is derived that can be used for graphing multiple-time tissue uptake data and determining whether a unidirectional transfer process was dominant during part or all of the experimental period. If the graph indicates unidirectionality of uptake, then an influx constant (Ki) can be calculated. The model is general, assumes linear transfer kinetics, and consists of a blood-plasma compartment, a reversible tissue region with an arbitrary number of compartments, and one or more irreversible tissue regions. The solution of the equations for this model shows that a graph of the ratio of the total tissue solute concentration at the times of sampling to the plasma concentration at the respective times (Cp) versus the ratio of the arterial plasma concentration-time integral to Cp should be drawn. If the data are consistent with this model, then this graph will yield a curve that eventually becomes linear, with a slope of Ki and an ordinate intercept less than or equal to the vascular plus steady-state space of the reversible tissue region.

3,526 citations

Journal Article
TL;DR: Current knowledge of blood flow and perfusion-related parameters, which usually go hand in hand and in turn define the cellular metabolic microenvironment of human malignancies, are summarized for predicting the acute and/or long-term response of tumors to therapy.
Abstract: The objective of this review article is to summarize current knowledge of blood flow and perfusion-related parameters, which usually go hand in hand and in turn define the cellular metabolic microenvironment of human malignancies. A compilation of available data from the literature on blood flow, oxygen and nutrient supply, and tissue oxygen and pH distribution in human tumors is presented. Whenever possible, data obtained for human tumors are compared with the respective parameters in normal tissues, isotransplanted or spontaneous rodent tumors, and xenografted human tumors. Although data on human tumors in situ are scarce and there may be significant errors associated with the techniques used for measurements, experimental evidence is provided for the existence of a compromised and anisotropic blood supply to many tumors. As a result, O2-depleted areas develop in human malignancies which coincide with nutrient and energy deprivation and with a hostile metabolic microenvironment (e.g., existence of severe tissue acidosis). Significant variations in these relevant parameters must be expected between different locations within the same tumor, at the same location at different times, and between individual tumors of the same grading and staging. Furthermore, this synopsis will attempt to identify relevant pathophysiological parameters and other related areas future research of which might be most beneficial for designing individually tailored treatment protocols with the goal of predicting the acute and/or long-term response of tumors to therapy.

3,379 citations

Journal ArticleDOI
15 Dec 2005-Nature
TL;DR: Angiogenesis research will probably change the face of medicine in the next decades, with more than 500 million people worldwide predicted to benefit from pro- or anti-angiogenesis treatments.
Abstract: The growth of blood vessels (a process known as angiogenesis) is essential for organ growth and repair. An imbalance in this process contributes to numerous malignant, inflammatory, ischaemic, infectious and immune disorders. Recently, the first anti-angiogenic agents have been approved for the treatment of cancer and blindness. Angiogenesis research will probably change the face of medicine in the next decades, with more than 500 million people worldwide predicted to benefit from pro- or anti-angiogenesis treatments.

3,300 citations