scispace - formally typeset
Search or ask a question
Journal ArticleDOI

mTORC1 is essential for leukemia propagation but not stem cell self-renewal

01 Jun 2012-Journal of Clinical Investigation (American Society for Clinical Investigation)-Vol. 122, Iss: 6, pp 2114-2129
TL;DR: Transplantation of Raptor-deficient undifferentiated AML cells in a limiting dilution revealed that mTORC1 is essential for leukemia initiation, and it was demonstrated that the reactivation of m TORC1 in those cells restored their leukemia-initiating capacity.
Abstract: Although dysregulation of mTOR complex 1 (mTORC1) promotes leukemogenesis, how mTORC1 affects established leukemia is unclear. We investigated the role of mTORC1 in mouse hematopoiesis using a mouse model of conditional deletion of Raptor, an essential component of mTORC1. Raptor deficiency impaired granulocyte and B cell development but did not alter survival or proliferation of hematopoietic progenitor cells. In a mouse model of acute myeloid leukemia (AML), Raptor deficiency significantly suppressed leukemia progression by causing apoptosis of differentiated, but not undifferentiated, leukemia cells. mTORC1 did not control cell cycle or cell growth in undifferentiated AML cells in vivo. Transplantation of Raptor-deficient undifferentiated AML cells in a limiting dilution revealed that mTORC1 is essential for leukemia initiation. Strikingly, a subset of AML cells with undifferentiated phenotypes survived long-term in the absence of mTORC1 activity. We further demonstrated that the reactivation of mTORC1 in those cells restored their leukemia-initiating capacity. Thus, AML cells lacking mTORC1 activity can self-renew as AML stem cells. Our findings provide mechanistic insight into how residual tumor cells circumvent anticancer therapies and drive tumor recurrence.

Content maybe subject to copyright    Report

Citations
More filters
Journal Article
TL;DR: Research data show that more resistant stem cells than common cancer cells exist in cancer patients, and to identify unrecognized differences between cancer stem cells and cancer cells might be able to develop effective classification, diagnose and treat for cancer.
Abstract: Stem cells are defined as cells able to both extensively self-renew and differentiate into progenitors. Research data show that more resistant stem cells than common cancer cells exist in cancer patients.To identify unrecognized differences between cancer stem cells and cancer cells might be able to develope effective classification,diagnose and treat ment for cancer.

2,194 citations

Journal ArticleDOI
TL;DR: It is shown that phosphorylation of the autophagy-adaptor protein p62 markedly increases p62's binding affinity for Keap1, an adaptor of the Cul3-ubiquitin E3 ligase complex responsible for degrading Nrf2, and that inhibitors of the interaction between phosphorylated p62 and Keap 1 have potential as therapeutic agents against human HCC.

824 citations


Cites background from "mTORC1 is essential for leukemia pr..."

  • ...Phosphorylation of p62 and induction of Nqo1 both decreased upon As(III) exposure in MEFs lacking Raptor (Hoshii et al., 2012), a component of the mTORC1 complex (Figures S2B and S2C)....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells is provided.
Abstract: Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.

255 citations


Cites background from "mTORC1 is essential for leukemia pr..."

  • ...Conversely, the deletion of the MTORC1 component RAPTOR, therefore theoretically causing an increase in autophagy, results in a decrease of this myeloid population.(91) However, it remains to be shown definitively that loss or gain of autophagy contributes to this phenotype, as MTOR inhibition signals for many other important cellular functions such as inhibition of protein translation, mitochondrial biogenesis, cell growth, motility and proliferation....

    [...]

Journal ArticleDOI
14 Nov 2013-Blood
TL;DR: It is shown that glutamine removal inhibits mTORC1 and induces apoptosis in AML cells, and that l-ases upregulate glutamine synthase expression in leukemic cells and that a GS knockdown enhances l-ase-induced apoptotic response in someAML cells.

238 citations


Cites background from "mTORC1 is essential for leukemia pr..."

  • ...Recently, it was shown in a raptor deficiency mouse model thatmTORC1 inactivation induces apoptosis in differentiated leukemic cells and maintains immature leukemic cells with leukemia initiation potential in a dormant state, underlying the critical role of mTORC1 in leukemia.(4) In vitro, in primary AML cells, mTORC1 inhibition with rapamycin has cytostatic effects but does not induce apoptosis,(2-5) mainly because it does not inhibit 4E-BP1 phosphorylation on ser65....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Evidence is provided that activation of the p90 ribosomal S6 kinases (RSKs) by serum, growth factors, tumor promoting phorbol esters, and oncogenic Ras provides an mTOR-independent pathway linking the Ras/ERK signaling cascade to the translational machinery.

711 citations


"mTORC1 is essential for leukemia pr..." refers background in this paper

  • ...Although S6 and eEF2K are substrates of p70S6K, it was also reported that p90 RSK can phosphorylate these proteins (28, 30)....

    [...]

Journal ArticleDOI
TL;DR: It is shown that rapamycin inhibits cap‐dependent, but not cap‐independent, translation in NIH 3T3 cells, and results suggest that 4E‐BP1 phosphorylation is mediated by the FRAP/TOR signalling pathway.
Abstract: The immunosuppressant drug rapamycin blocks progression of the cell cycle at the G1 phase in mammalian cells and yeast. Here we show that rapamycin inhibits cap-dependent, but not cap-independent, translation in NIH 3T3 cells. Cap-dependent translation is also specifically reduced in extracts from rapamycin-treated cells, as determined by in vitro translation experiments. This inhibition is causally related to the dephosphorylation and consequent activation of 4E-BP1, a protein recently identified as a repressor of the cap-binding protein, eIF-4E, function. These effects of rapamycin are specific as FK506, a structural analogue of rapamycin, had no effect on either cap-dependent translation or 4E-BP1 phosphorylation. The rapamycin-FK506 binding protein complex is the effector of the inhibition of 4E-BP1 phosphorylation as excess of FK506 over rapamycin reversed the rapamycin-mediated inhibition of 4E-BP1 phosphorylation. Thus, inactivation of eIF-4E is, at least in part, responsible for inhibition of cap-dependent translation in rapamycin-treated cells. Furthermore, these results suggest that 4E-BP1 phosphorylation is mediated by the FRAP/TOR signalling pathway.

695 citations

Journal ArticleDOI
TL;DR: The ability of transient repopulating progenitors to initiate myeloid leukemias in response to an MLL oncogene is unequivocally established, and the existence of cancer stem cells that do not necessarily overlap with multipotent stem cells of the tissue of origin is supported.
Abstract: We have used the hematopoietic system as a model to investigate whether acute myeloid leukemia arises exclusively from self-renewing stem cells or also from short-lived myeloid progenitors. When transduced with a leukemogenic MLL fusion gene, prospectively isolated stem cells and myeloid progenitor populations with granulocyte/macrophage differentiation potential are efficiently immortalized in vitro and result in the rapid onset of acute myeloid leukemia with similar latencies following transplantation in vivo. Regardless of initiating cell, leukemias displayed immunophenotypes and gene expression profiles characteristic of maturation arrest at an identical late stage of myelomonocytic differentiation, putatively a monopotent monocytic progenitor stage. Our findings unequivocally establish the ability of transient repopulating progenitors to initiate myeloid leukemias in response to an MLL oncogene, and support the existence of cancer stem cells that do not necessarily overlap with multipotent stem cells of the tissue of origin.

685 citations

Journal ArticleDOI
TL;DR: It is demonstrated that some, but not all, leukemia oncogenes can confer properties of leukemic stem cells to hematopoietic progenitors destined to undergo apoptotic cell death.

667 citations

Journal ArticleDOI
28 May 2010-Science
TL;DR: Control of cell size and cell cycle progression appear to be independent in mammalian cells, whereas in lower eukaryotes, 4E-BPs influence both cell growth and proliferation.
Abstract: The mammalian target of rapamycin complex 1 (mTORC1) integrates mitogen and nutrient signals to control cell proliferation and cell size. Hence, mTORC1 is implicated in a large number of human diseases--including diabetes, obesity, heart disease, and cancer--that are characterized by aberrant cell growth and proliferation. Although eukaryotic translation initiation factor 4E-binding proteins (4E-BPs) are critical mediators of mTORC1 function, their precise contribution to mTORC1 signaling and the mechanisms by which they mediate mTORC1 function have remained unclear. We inhibited the mTORC1 pathway in cells lacking 4E-BPs and analyzed the effects on cell size, cell proliferation, and cell cycle progression. Although the 4E-BPs had no effect on cell size, they inhibited cell proliferation by selectively inhibiting the translation of messenger RNAs that encode proliferation-promoting proteins and proteins involved in cell cycle progression. Thus, control of cell size and cell cycle progression appear to be independent in mammalian cells, whereas in lower eukaryotes, 4E-BPs influence both cell growth and proliferation.

666 citations


"mTORC1 is essential for leukemia pr..." refers background in this paper

  • ...Because the proliferation is restored by 4E-BP1/2 deficiency, 4E-BPs are thought to be key regulators of cell proliferation when mTORC1 activity is downregulated (45)....

    [...]

  • ...Previous studies demonstrated that mTORC1 activity plays critical roles in cell proliferation in embryonic fibroblasts and cell lines (45, 46)....

    [...]