scispace - formally typeset
Search or ask a question
Journal ArticleDOI

mTORC1 signaling and regulation of pancreatic β-cell mass

TL;DR: It is demonstrated that deletion of Tsc1 in pancreatic β cells results in improved glucose tolerance, hyperinsulinemia and expansion of β-cell mass that persists with aging.
Abstract: The capacity of β cells to expand in response to insulin resistance is a critical factor in the development of type 2 diabetes. Proliferation of β cells is a major component for these adaptive responses in animal models. The extracellular signals responsible for β-cell expansion include growth factors, such as insulin, and nutrients, such as glucose and amino acids. AKT activation is one of the important components linking growth signals to the regulation of β-cell expansion. Downstream of AKT, tuberous sclerosis complex 1 and 2 (TSC1/2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling have emerged as prime candidates in this process, because they integrate signals from growth factors and nutrients. Recent studies demonstrate the importance of mTORC1 signaling in β cells. This review will discuss recent advances in the understanding of how this pathway regulates β-cell mass and present data on the role of TSC1 in modulation of β-cell mass. Herein, we also demonstrate that deletion of Tsc1 ...

Content maybe subject to copyright    Report

Citations
More filters
Journal Article
01 Jan 2004-Nature
TL;DR: In this article, S6K1-deficient mice are protected against obesity owing to enhanced β-oxidation, but on a high fat diet, levels of glucose and free fatty acids still rise in S6k1-dependent mice, resulting in insulin receptor desensitization.
Abstract: Elucidating the signalling mechanisms by which obesity leads to impaired insulin action is critical in the development of therapeutic strategies for the treatment of diabetes. Recently, mice deficient for S6 Kinase 1 (S6K1), an effector of the mammalian target of rapamycin (mTOR) that acts to integrate nutrient and insulin signals, were shown to be hypoinsulinaemic, glucose intolerant and have reduced β-cell mass. However, S6K1-deficient mice maintain normal glucose levels during fasting, suggesting hypersensitivity to insulin, raising the question of their metabolic fate as a function of age and diet. Here, we report that S6K1-deficient mice are protected against obesity owing to enhanced β-oxidation. However on a high fat diet, levels of glucose and free fatty acids still rise in S6K1-deficient mice, resulting in insulin receptor desensitization. Nevertheless, S6K1-deficient mice remain sensitive to insulin owing to the apparent loss of a negative feedback loop from S6K1 to insulin receptor substrate 1 (IRS1), which blunts S307 and S636/S639 phosphorylation; sites involved in insulin resistance. Moreover, wild-type mice on a high fat diet as well as K/K Ay and ob/ob (also known as Lep/Lep) micetwo genetic models of obesityhave markedly elevated S6K1 activity and, unlike S6K1-deficient mice, increased phosphorylation of IRS1 S307 and S636/S639. Thus under conditions of nutrient satiation S6K1 negatively regulates insulin signalling.

1,408 citations

Journal ArticleDOI
TL;DR: Evidence accumulated over the past 15 years has highlighted the presence of active Akt in the nucleus, where it acts as a fundamental component of key signaling pathways, and the most relevant findings about nuclear Akt are summarized.

181 citations


Cites background from "mTORC1 signaling and regulation of ..."

  • ...As such, Akt isoforms play key roles in cell survival [17], proliferation [21], growth [22], migration [23], polarity [24], insulin-evoked...

    [...]

Journal ArticleDOI
TL;DR: A stem cell-independent model of tissue homeostasis is defined, in which differentiated secretory cells use the UPR sensor to adapt organ size to meet demand, suggesting that therapeutic UPR modulation has potential to expand β cell mass in people at risk for diabetes.
Abstract: Although stem cell populations mediate regeneration of rapid turnover tissues, such as skin, blood, and gut, a stem cell reservoir has not been identified for some slower turnover tissues, such as the pancreatic islet. Despite lacking identifiable stem cells, murine pancreatic β cell number expands in response to an increase in insulin demand. Lineage tracing shows that new β cells are generated from proliferation of mature, differentiated β cells; however, the mechanism by which these mature cells sense systemic insulin demand and initiate a proliferative response remains unknown. Here, we identified the β cell unfolded protein response (UPR), which senses insulin production, as a regulator of β cell proliferation. Using genetic and physiologic models, we determined that among the population of β cells, those with an active UPR are more likely to proliferate. Moreover, subthreshold endoplasmic reticulum stress (ER stress) drove insulin demand-induced β cell proliferation, through activation of ATF6. We also confirmed that the UPR regulates proliferation of human β cells, suggesting that therapeutic UPR modulation has potential to expand β cell mass in people at risk for diabetes. Together, this work defines a stem cell-independent model of tissue homeostasis, in which differentiated secretory cells use the UPR sensor to adapt organ size to meet demand.

151 citations


Cites background from "mTORC1 signaling and regulation of ..."

  • ...Intriguingly, in HEK293T cells, the ISR preferentially reduces translation of MTOR-regulated genes (61); β cell proliferation is strictly dependent on MTOR activation (62)....

    [...]

Journal ArticleDOI
TL;DR: It is suggested that mTORC1 may act as a "double edge sword" in the regulation of β cell mass and function in response to metabolic stress such as nutrient overload and insulin resistance.

126 citations

Journal ArticleDOI
TL;DR: Molecular studies in the NAFLD support a key role for PTEN in hepatic insulin sensitivity and the development of steatosis, steatohepatitis, and fibrosis, and review recent studies on the features of the PTEN and the PI3K/AKT pathway.
Abstract: Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver pathologies and is associated with obesity and the metabolic syndrome, which represents a range of fatty liver diseases associated with an increased risk of type 2 diabetes. Molecular mechanisms underlying how to make transition from simple fatty liver to nonalcoholic steatohepatitis (NASH) are not well understood. However, accumulating evidence indicates that deregulation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in hepatocytes is a common molecular event associated with metabolic dysfunctions including obesity, metabolic syndrome, and the NAFLD. A tumor suppressor PTEN negatively regulates the PI3K/AKT pathways through its lipid phosphatase activity. Molecular studies in the NAFLD support a key role for PTEN in hepatic insulin sensitivity and the development of steatosis, steatohepatitis, and fibrosis. We review recent studies on the features of the PTEN and the PI3K/AKT pathway and discuss the protein functions in the signaling pathways involved in the NAFLD. The molecular mechanisms contributing to the diseases are the subject of considerable investigation, as a better understanding of the pathogenesis will lead to novel therapies for a condition.

125 citations


Cites background from "mTORC1 signaling and regulation of ..."

  • ...The oxidative stress can activate a series of stress pathways involving a family of serine/threonine kinases including AKT, which in turn have a negative effect on insulin signaling [21]....

    [...]

References
More filters
Journal ArticleDOI
01 Jul 2002-Genetics
TL;DR: The results indicate that the fission yeast Tsc1-Tsc2 complex plays a role in the regulation of protein trafficking and suggest a similar function for the human proteins.
Abstract: Heterozygous inactivation of either human TSC1 or TSC2 causes tuberous sclerosis (TSC), in which development of benign tumors, hamartomas, occurs via a two-hit mechanism. In this study, fission yeast genes homologous to TSC1 and TSC2 were identified, and their protein products were shown to physically interact like the human gene products. Strains lacking tsc1(+) or tsc2(+) were defective in uptake of nutrients from the environment. An amino acid permease, which is normally positioned on the plasma membrane, aggregated in the cytoplasm or was confined in vacuole-like structures in Deltatsc1 and Deltatsc2 strains. Deletion of tsc1(+) or tsc2(+) also caused a defect in conjugation. When a limited number of the cells were mixed, they conjugated poorly. The conjugation efficiency was improved by increased cell density. Deltatsc1 cells were not responsive to a mating pheromone, P-factor, suggesting that Tsc1 has an important role in the signal cascade for conjugation. These results indicate that the fission yeast Tsc1-Tsc2 complex plays a role in the regulation of protein trafficking and suggest a similar function for the human proteins. We also show that fission yeast Int6 is involved in a similar process, but functions in an independent genetic pathway.

104 citations

Journal ArticleDOI
TL;DR: Studies reported in the past 18 months have greatly expanded knowledge of one of the signaling pathways through which amino acids act to regulate mTOR and also the molecular interactions that mediate the interaction between m TOR and two downstream substrates, eukaryotic initiation factor 4E binding protein 1 and ribosomal protein S6 kinase.
Abstract: Purpose of reviewThe purpose of this review is to provide a summary of the current state of knowledge concerning one of the intracellular signal transduction pathways through which amino acids, and in particular leucine, regulate the initiation phase of mRNA translation. The primary focus is on a pr

95 citations

Journal ArticleDOI
TL;DR: In this paper, the role of TSC1 and mTORC1 in β-cell function and glycemic control was investigated in pancreatic β-cells (Rip-Tsc1cKO mice).
Abstract: TSC1 is a tumor suppressor that associates with TSC2 to inactivate Rheb, thereby inhibiting signaling by the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). mTORC1 stimulates cell growth by promoting anabolic cellular processes, such as translation, in response to growth factors and nutrient signals. To test roles for TSC1 and mTORC1 in β-cell function, we utilized Rip2/Cre to generate mice lacking Tsc1 in pancreatic β-cells (Rip-Tsc1cKO mice). Although obesity developed due to hypothalamic Tsc1 excision in older Rip-Tsc1cKO animals, young animals displayed a prominent gain-of-function β-cell phenotype prior to the onset of obesity. The young Rip-Tsc1cKO animals displayed improved glycemic control due to mTOR-mediated enhancement of β-cell size, mass, and insulin production but not determinants of β-cell number (proliferation and apoptosis), consistent with an important anabolic role for mTOR in β-cell function. Furthermore, mTOR mediated these effects in the face of impaired Akt signaling in β-cells. Thus, mTOR promulgates a dominant signal to promote β-cell/islet size and insulin production, and this pathway is crucial for β-cell function and glycemic control.

93 citations

Journal ArticleDOI
01 Jun 2009-Diabetes
TL;DR: Activation of the mTORC1 pathway by Rheb led to increased β-cell mass in this mouse model without producing obvious unfavorable effects, giving a potential approach for the treatment of β- cell failure and diabetes.
Abstract: OBJECTIVE Components of insulin/IGF-1 receptor–mediated signaling pathways in pancreatic β-cells have been implicated in the development of diabetes, in part through the regulation of β-cell mass in vivo. Studies in vitro have shown that the protein Ras homolog enriched in brain (Rheb) plays a key role as a positive upstream regulator of the mammalian target of rapamycin complex 1 (mTORC1) pathway in integrating inputs from nutrients and growth factors for cell growth. Our objective was to investigate the role of the mTORC1 pathway in the regulation of β-cell mass in vivo. RESEARCH DESIGN AND METHODS We generated transgenic mice that overexpress Rheb in β-cells. We examined the activation of the mTORC1 pathway and its effects on β-cell mass, on glucose metabolism, and on protection against hyperglycemia. RESULTS Immunoblots of islet extracts revealed that the phosphorylation levels of ribosomal protein S6 and eukaryotic initiation factor 4E binding protein 1, downstream effectors for mTORC1, were upregulated in transgenic β-cells. Immunostaining of the pancreatic sections with anti–phospho-S6 antibody confirmed upregulation of the mTORC1 pathway in β-cells in vivo. The mice showed improved glucose tolerance with higher insulin secretion. This arose from increased β-cell mass accompanied by increased cell size. The mice also exhibited resistance to hyperglycemia induced by streptozotocin and obesity. CONCLUSIONS Activation of the mTORC1 pathway by Rheb led to increased β-cell mass in this mouse model without producing obvious unfavorable effects, giving a potential approach for the treatment of β-cell failure and diabetes.

89 citations

Journal ArticleDOI
01 Mar 2009-Diabetes
TL;DR: A combination of GSK-3 inhibition and nutrient activation of mTOR contributes to enhanced DNA synthesis, cell cycle progression, and proliferation of human β-cells.
Abstract: OBJECTIVE— Our previous studies demonstrated that nutrient regulation of mammalian target of rapamycin (mTOR) signaling promotes regenerative processes in rodent islets but rarely in human islets. Our objective was to extend these findings by using therapeutic agents to determine whether the regulation of glycogen synthase kinase-3 (GSK-3)/β-catenin and mTOR signaling represent key components necessary for effecting a positive impact on human β-cell mass relevant to type 1 and 2 diabetes. RESEARCH DESIGN AND METHODS— Primary adult human and rat islets were treated with the GSK-3 inhibitors, LiCl and the highly potent 1-azakenpaullone (1-Akp), and with nutrients. DNA synthesis, cell cycle progression, and proliferation of β-cells were assessed. Measurement of insulin secretion and content and Western blot analysis of GSK-3 and mTOR signaling components were performed. RESULTS— Human islets treated for 4 days with LiCl or 1-Akp exhibited significant increases in DNA synthesis, cell cycle progression, and proliferation of β-cells that displayed varying degrees of sensitivity to rapamycin. Intermediate glucose (8 mmol/l) produced a striking degree of synergism in combination with GSK-3 inhibition to enhance bromodeoxyuridine (BrdU) incorporation and Ki-67 expression in human β-cells. Nuclear translocation of β-catenin responsible for cell proliferation was found to be particularly sensitive to rapamycin. CONCLUSIONS— A combination of GSK-3 inhibition and nutrient activation of mTOR contributes to enhanced DNA synthesis, cell cycle progression, and proliferation of human β-cells. Identification of therapeutic agents that appropriately regulate GSK-3 and mTOR signaling may provide a feasible and available approach to enhance human islet growth and proliferation.

88 citations