scispace - formally typeset
Open AccessJournal ArticleDOI

Multi-component quantum gases in spin-dependent hexagonal lattices

Reads0
Chats0
TLDR
In this paper, a honeycomb lattice structure has been realized for materials with hexagonal crystal symmetries, such as graphene or carbon nanotubes, which can be used to study a wide range of many-body effects.
Abstract
Ultracold quantum gases in optical lattices have been used to study a wide range of many-body effects. Nearly all experiments so far, however, have been performed in cubic optical lattice structures. Now a ‘honeycomb’ lattice structure has been realized. The approach promises insight into materials with hexagonal crystal symmetries, such as graphene or carbon nanotubes.

read more

Citations
More filters
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Journal ArticleDOI

Dirac materials

TL;DR: A wide range of materials, such as d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrodinger Hamiltonian as mentioned in this paper.
Journal ArticleDOI

Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice

TL;DR: In this paper, the authors exploit the unique tunability of a honeycomb optical lattice to adjust the effective mass of the Dirac fermions by breaking inversion symmetry and changing the lattice anisotropy.
Journal ArticleDOI

Quantum simulation of antiferromagnetic spin chains in an optical lattice

TL;DR: Using an ultracold gas of rubidium atoms confined in an optical lattice, Simon et al. as discussed by the authors simulate quantum magnetism in a chain of spins and observe a quantum phase transition from a paramagnetic phase into an antiferromagnetic phase.
Posted Content

Quantum Simulation of an Antiferromagnetic Spin Chain in an Optical Lattice

TL;DR: By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, thereby improving the understanding of real magnetic materials.
References
More filters
Journal ArticleDOI

Helical microtubules of graphitic carbon

Sumio Iijima
- 01 Nov 1991 - 
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Many-Body Physics with Ultracold Gases

TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Journal ArticleDOI

Quantum Phase Transition From a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms

TL;DR: This work observes a quantum phase transition in a Bose–Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential, and can induce reversible changes between the two ground states of the system.
Journal ArticleDOI

Quantum phase transitions

TL;DR: The universe itself is thought to have passed through several phase transitions as the high-temperature plasma formed by the big bang cooled to form the world as we know it today as mentioned in this paper.
Related Papers (5)