scispace - formally typeset
Search or ask a question
Journal ArticleDOI

"Multi-component reactions : emerging chemistry in drug discovery" 'from xylocain to crixivan'.

01 Jan 2003-Current Medicinal Chemistry (Curr Med Chem)-Vol. 10, Iss: 1, pp 51-80
TL;DR: This review details developments of new, highly atom-economic MCR derived chemical methods, which enable the fast and efficient production of chemical libraries comprised of a variety of biologically relevant templates, and focuses on applications of isocyanide based MCR (IMCR) reactions.
Abstract: With the recent emergence of combinatorial chemistry and high-speed parallel synthesis for drug discovery applications, the multi-component reaction (MCR) has seen a resurgence of interest. Easily automated one-pot reactions, such as the Ugi and Passerini reactions, are powerful tools for producing diverse arrays of compounds, often in one step and high yield. Despite this synthetic potential, the Ugi reaction is limited by producing products that are flexible and peptide-like, often being classified as 'non drug-like'. This review details developments of new, highly atom-economic MCR derived chemical methods, which enable the fast and efficient production of chemical libraries comprised of a variety of biologically relevant templates. Representative examples will also be given demonstrating the successful impact of MCR combinatorial methods at different stages of the lead discovery, lead optimization and pre-clinical process development arenas. This will include applications spanning biological tools, natural products and natural product-like diversity, traditional small molecule and 'biotech' therapeutics respectively. In particular, this review will focus on applications of isocyanide based MCR (IMCR) reactions.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper presents a new approach to drug design called “combinatorial biosynthesis and drug discovery through nanofiltration”, which combines the efforts of a single investigator with those of a number of other scientists.
Abstract: Multicomponent reactions (MCRs) are one-pot reactions employing more than two starting materials, e.g. 3, 4, … 7, where most of the atoms of the starting materials are incorporated in the final product.1 Several descriptive tags are regularly attached to MCRs (Fig. 1): they are atom economic, e.g. the majority if not all of the atoms of the starting materials are incorporated in the product; they are efficient, e.g. they efficiently yield the product since the product is formed in one-step instead of multiple sequential steps; they are convergent, e.g. several starting materials combine in one reaction to form the product; they exhibit a very high bond-forming-index (BFI), e.g. several non-hydrogen atom bonds are formed in one synthetic transformation.2 Therefore MCRs are often a useful alternative to sequential multistep synthesis. Open in a separate window Figure 1 Above: multistep syntheses can be divergent (sequential) or convergent; below: in analogy MCR reactions are convergent and one or two component reactions are divergent or less convergent.

1,840 citations

Journal ArticleDOI
TL;DR: Asymmetric multicomponent reactions involve the preparation of chiral compounds by the reaction of three or more reagents added simultaneously and has some advantages over classic divergent reaction strategies, such as lower costs, time, and energy, as well as environmentally friendlier aspects.
Abstract: Asymmetric multicomponent reactions involve the preparation of chiral compounds by the reaction of three or more reagents added simultaneously. This kind of addition and reaction has some advantages over classic divergent reaction strategies, such as lower costs, time, and energy, as well as environmentally friendlier aspects. All these advantages, together with the high level of stereoselectivity attained in some of these reactions, will force chemists in industry as in academia to adopt this new strategy of synthesis, or at least to consider it as a viable option. The positive aspects as well as the drawbacks of this strategy are discussed in this Review.

1,479 citations

Journal ArticleDOI
TL;DR: The preparation of urea by Wöhler constituted a landmark achievement in organic chemistry, and it laid the ground for the early days of target-oriented organic synthesis, a task deemed inconceivable by early practitioners.
Abstract: The preparation of urea by Wöhler constituted a landmark achievement in organic chemistry, and it laid the ground for the early days of target-oriented organic synthesis.1 Since then, significant progress has been achieved in this discipline; many powerful single bond forming reactions and asymmetric variants have been developed. These discoveries have paved the way for the stereoselective assembly of complex organic molecules, a task deemed inconceivable by early practitioners. A great many strategies were invented by chemists in order to facilitate the synthesis of complex natural products.2 One avenue in emulating nature’s efficiency would * To whom correspondence should be addressed. E-mail: dennis.hall@ ualberta.ca. † Novartis Institute for Biomedical Research. ‡ Department of Chemistry, University of Alberta. Chem. Rev. 2009, 109, 4439–4486 4439

1,374 citations

Journal ArticleDOI
Bruce Ganem1
TL;DR: This Account provides several examples that illustrate the use of SRR with known MCRs as starting points for synthetic innovation in this area, and explores strategies for engineering improvements into known M CRs, either by increasing the dimensionality, broadening the scope of useful input structures, or both.
Abstract: By generating structural complexity in a single step from three or more reactants, multicomponent reactions (MCRs) make it possible to synthesize target compounds with greater efficiency and atom economy. The history of such reactions can be traced to the mid-19th century when Strecker first produced α-aminonitriles from the condensation of aldehydes with ammonia and hydrogen cyanide. Recently, academic chemists have renewed their interest in MCRs. In part, the pharmaceutical industry has fueled this resurgence because of the growing need to assemble libraries of structurally complex substances for evaluation as lead compounds in drug discovery and development programs. The application of MCRs to that increasingly important objective remains limited by the relatively small number of such reactions that can be broadly applied to prepare biologically relevant or natural-product-like molecular frameworks. We were interested in applying logic-based approaches, such as our single reactant replacement (SRR) app...

966 citations

Trending Questions (1)
How was synthetiside drug crixivan?

Crixivan, a synthetiside drug, was synthesized using multi-component reactions (MCR), specifically isocyanide based MCR (IMCR) reactions, showcasing efficient and cost-effective drug discovery methodologies.