scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Multi-slot energy harvesting wireless communication in interference environment.

01 May 2021-Mathematical Biosciences and Engineering (American Institute of Mathematical Sciences (AIMS))-Vol. 18, Iss: 4, pp 4127-4145
TL;DR: In this paper, the exact closed-form expressions of the effective throughput of a multi-slot EH scheme with Rayleigh channel fading and possible co-channel interference were derived theoretically.
Abstract: Radio frequency energy harvesting (EH) technology can harvest the electromagnetic energy in the surrounding environment, and reduce the dependence of the communication devices on battery or power grid as power source, which is a very promising means of energy substitution and acquisition scheme. The random characteristics of wireless channel fading and possible co-channel interference (CCI) have great influence on EH efficiency and wireless communication performance with more complicated theoretical analysis. In this paper, the exact closed-form expressions of effective throughput of "harvest-store-use" and "harvest-use" multi-slot EH schemes with Rayleigh channel fading and CCI are derived theoretically. The simulation results show that in Rayleigh fading channels with CCI, CCI is beneficial to energy harvesting of EH device, but it will deteriorate the reception of required signals by information receiving device. Although there are obvious differences in working mechanism, working conditions and communication performance between the "harvest-store-use" scheme and the "harvest-use" scheme, the optimal time slot should be selected to balance the transmission probability and delay, minimize the interference of CCI to the desired signal, and improve the energy conversion efficiency of the energy harvester.
References
More filters
Journal ArticleDOI
TL;DR: This paper presents an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications, and explores various key design issues according to the network types, i.e., single-hop networks, multiantenna networks, relay networks, and cognitive radio networks.
Abstract: Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next-generation wireless networks As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service requirements In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, which is referred to as RF energy harvesting networks (RF-EHNs) First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations and review the communication protocols specially designed for RF-EHNs We also explore various key design issues in the development of RF-EHNs according to the network types, ie, single-hop networks, multiantenna networks, relay networks, and cognitive radio networks Finally, we envision some open research directions

2,352 citations

Journal ArticleDOI
TL;DR: The idea of wireless power transfer (WPT) has been around since the inception of electricity and Nikola Tesla described the freedom to transfer energy between two points without the need for a physical connection to a power source as an?all-surpassing importance to man? as discussed by the authors.
Abstract: The idea of wireless power transfer (WPT) has been around since the inception of electricity. In the late 19th century, Nikola Tesla described the freedom to transfer energy between two points without the need for a physical connection to a power source as an ?all-surpassing importance to man? [1]. A truly wireless device, capable of being remotely powered, not only allows the obvious freedom of movement but also enables devices to be more compact by removing the necessity of a large battery. Applications could leverage this reduction in size and weight to increase the feasibility of concepts such as paper-thin, flexible displays [2], contact-lens-based augmented reality [3], and smart dust [4], among traditional point-to-point power transfer applications. While several methods of wireless power have been introduced since Tesla?s work, including near-field magnetic resonance and inductive coupling, laser-based optical power transmission, and far-field RF/microwave energy transmission, only RF/microwave and laser-based systems are truly long-range methods. While optical power transmission certainly has merit, its mechanisms are outside of the scope of this article and will not be discussed.

745 citations

Journal ArticleDOI
TL;DR: An overview of the past and recent developments in energy harvesting communications and networking is presented and a number of possible future research avenues are highlighted.
Abstract: Recent emphasis on green communications has generated great interest in the investigations of energy harvesting communications and networking. Energy harvesting from ambient energy sources can potentially reduce the dependence on the supply of grid or battery energy, providing many attractive benefits to the environment and deployment. However, unlike the conventional stable energy, the intermittent and random nature of the renewable energy makes it challenging in the realization of energy harvesting transmission schemes. Extensive research studies have been carried out in recent years to address this inherent challenge from several aspects: energy sources and models, energy harvesting and usage protocols, energy scheduling and optimization, implementation of energy harvesting in cooperative, cognitive radio, multiuser and cellular networks, etc. However, there has not been a comprehensive survey to lay out the complete picture of recent advances and future directions. To fill such a gap, in this paper, we present an overview of the past and recent developments in these areas and highlight a number of possible future research avenues.

519 citations

Journal ArticleDOI
TL;DR: Numerical results are presented to show that, when a large amount of harvested power is required, a single harvester or the linear range of a practical nonlinear harvesters are more efficient, to avoid power outage.
Abstract: In this paper, we study the average, the probability density function, and the cumulative distribution function of the harvested power. The signals are transmitted from multiple sources. The channels are assumed to be either Rician fading or Gamma-shadowed Rician fading. The received signals are then harvested by using either a single harvester for simultaneous transmissions or multiple harvesters for transmissions at different frequencies, antennas or time slots. Both linear and nonlinear models for the energy harvester at the receiver are examined. Numerical results are presented to show that, when a large amount of harvested power is required, a single harvester or the linear range of a practical nonlinear harvester are more efficient, to avoid power outage. Further, the power transfer strategy can be optimized for fixed total power. Specifically, for Rayleigh fading, the optimal strategy is to put the total power at the source with the best channel condition and switch off all other sources, while for general Rician fading, the optimum magnitudes and phases of the transmitting waveforms depend on the channel parameters.

140 citations

Journal ArticleDOI
TL;DR: A novel SWIPT-supported power allocation mechanism for D2D communications is showcased to illustrate the importance of the application ofSWIPT.
Abstract: Energy efficiency will play a crucial role in future communication systems and has become a main design target for all 5G radio access networks. The high operational costs and impossibility of replacing or recharging wireless device batteries in multiple scenarios, such as wireless medical sensors inside the human body, call for a new technology by which wireless devices can harvest energy from the environment via capturing ambient RF signals. SWIPT has emerged as a powerful means to address this issue. In this article, we survey the current architectures and enabling technologies for SWIPT and identify technical challenges to implement SWIPT. Following an overview of enabling technologies for SWIPT and SWIPT-assisted wireless systems, we showcase a novel SWIPT-supported power allocation mechanism for D2D communications to illustrate the importance of the application of SWIPT. As an ending note, we point out some future research directions to encourage and motivate more research efforts on SWIPT.

126 citations