scispace - formally typeset
Search or ask a question
Posted Content

Multi-trace Correlators in the SYK Model and Non-geometric Wormholes

TL;DR: In this article, the role of global fluctuations in the density of states of the SYK model is investigated, showing that the dominant diagrams are given by 1PI cactus graphs and derive a vector model of couplings which reproduces these results.
Abstract: We consider multi-energy level distributions in the SYK model, and in particular, the role of global fluctuations in the density of states of the SYK model The connected contributions to the moments of the density of states go to zero as $N \to \infty$, however, they are much larger than the standard RMT correlations We provide a diagrammatic description of the leading behavior of these connected moments, showing that the dominant diagrams are given by 1PI cactus graphs, and derive a vector model of the couplings which reproduces these results We generalize these results to the first subleading corrections, and to fluctuations of correlation functions In either case, the new set of correlations between traces (ie between boundaries) are not associated with, and are much larger than, the ones given by topological wormholes The connected contributions that we discuss are the beginning of an infinite series of terms, associated with more and more information about the ensemble of couplings, which hints towards the dual of a single realization In particular, we suggest that incorporating them in the gravity description requires the introduction of new, lighter and lighter, fields in the bulk with fluctuating boundary couplings
References
More filters
Journal ArticleDOI
TL;DR: It is shown that a bounded, isolated quantum system of many particles in a specific initial state will approach thermal equilibrium if the energy eigenfunctions which are superposed to form that state obey Berry's conjecture, and argued that these results constitute a sound foundation for quantum statistical mechanics.
Abstract: We show that a bounded, isolated quantum system of many particles in a specific initial state will approach thermal equilibrium if the energy eigenfunctions which are superposed to form that state obey Berry's conjecture. Berry's conjecture is expected to hold only if the corresponding classical system is chaotic, and essentially states that the energy eigenfunctions behave as if they were Gaussian random variables. We review the existing evidence, and show that previously neglected effects substantially strengthen the case for Berry's conjecture. We study a rarefied hard-sphere gas as an explicit example of a many-body system which is known to be classically chaotic, and show that an energy eigenstate which obeys Berry's conjecture predicts a Maxwell-Boltzmann, Bose-Einstein, or Fermi-Dirac distribution for the momentum of each constituent particle, depending on whether the wave functions are taken to be nonsymmetric, completely symmetric, or completely antisymmetric functions of the positions of the particles. We call this phenomenon eigenstate thermalization. We show that a generic initial state will approach thermal equilibrium at least as fast as O(\ensuremath{\Elzxh}/\ensuremath{\Delta})${\mathit{t}}^{\mathrm{\ensuremath{-}}1}$, where \ensuremath{\Delta} is the uncertainty in the total energy of the gas. This result holds for an individual initial state; in contrast to the classical theory, no averaging over an ensemble of initial states is needed. We argue that these results constitute a sound foundation for quantum statistical mechanics.

2,649 citations

Journal ArticleDOI
TL;DR: A closed quantum-mechanical system with a large number of degrees of freedom does not necessarily give time averages in agreement with the microcanonical distribution, so by adding a finite but very small perturbation in the form of a random matrix, the results of quantum statistical mechanics are recovered.
Abstract: A closed quantum-mechanical system with a large number of degrees of freedom does not necessarily give time averages in agreement with the microcanonical distribution. For systems where the different degrees of freedom are uncoupled, situations are discussed that show a violation of the usual statistical-mechanical rules. By adding a finite but very small perturbation in the form of a random matrix, it is shown that the results of quantum statistical mechanics are recovered. Expectation values in energy eigenstates for this perturbed system are also discussed, and deviations from the microcanonical result are shown to become exponentially small in the number of degrees of freedom.

2,390 citations

Journal ArticleDOI
TL;DR: In this paper, a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom is given, based on plausible physical assumptions, establishing this conjecture.
Abstract: We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent λ L ≤ 2πk B T/ℏ. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.

2,216 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the quantum mechanical model of $N$ Majorana fermions with random interactions of a few Fermions at a time (Sachdev-Ye-Kitaev model) in the large N$ limit.
Abstract: The authors study in detail the quantum mechanical model of $N$ Majorana fermions with random interactions of a few fermions at a time (Sachdev-Ye-Kitaev model) in the large $N$ limit. At low energies, the system is strongly interacting and an emergent conformal symmetry develops. Performing technical calculations, the authors elucidate a number of properties of the model near the conformal point.

1,953 citations

Journal ArticleDOI
TL;DR: In this article, the authors used holography to study sensitive dependence on initial conditions in strongly coupled field theories and showed that the effect of the early infalling quanta relative to the t = 0 slice creates a shock wave that destroys the local two-sided correlations present in the unperturbed state.
Abstract: We use holography to study sensitive dependence on initial conditions in strongly coupled field theories. Specifically, we mildly perturb a thermofield double state by adding a small number of quanta on one side. If these quanta are released a scrambling time in the past, they destroy the local two-sided correlations present in the unperturbed state. The corresponding bulk geometry is a two-sided AdS black hole, and the key effect is the blueshift of the early infalling quanta relative to the t = 0 slice, creating a shock wave. We comment on string- and Planck-scale corrections to this setup, and discuss points that may be relevant to the firewall controversy.

1,589 citations