scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Multi-view self-supervised deep learning for 6D pose estimation in the Amazon Picking Challenge

TL;DR: This paper proposes a self-supervised method to generate a large labeled dataset without tedious manual segmentation and demonstrates that the system can reliably estimate the 6D pose of objects under a variety of scenarios.
Abstract: Robot warehouse automation has attracted significant interest in recent years, perhaps most visibly in the Amazon Picking Challenge (APC) [1]. A fully autonomous warehouse pick-and-place system requires robust vision that reliably recognizes and locates objects amid cluttered environments, self-occlusions, sensor noise, and a large variety of objects. In this paper we present an approach that leverages multiview RGB-D data and self-supervised, data-driven learning to overcome those difficulties. The approach was part of the MIT-Princeton Team system that took 3rd- and 4th-place in the stowing and picking tasks, respectively at APC 2016. In the proposed approach, we segment and label multiple views of a scene with a fully convolutional neural network, and then fit pre-scanned 3D object models to the resulting segmentation to get the 6D object pose. Training a deep neural network for segmentation typically requires a large amount of training data. We propose a self-supervised method to generate a large labeled dataset without tedious manual segmentation. We demonstrate that our system can reliably estimate the 6D pose of objects under a variety of scenarios. All code, data, and benchmarks are available at http://apc.cs.princeton.edu/

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This paper presents a comprehensive review of recent progress in deep learning methods for point clouds, covering three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation.
Abstract: Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions

1,021 citations


Additional excerpts

  • ...These datasets have further boosted the research of deep learning on 3D point clouds, with an increasingly number of methods being proposed to address various problems related to point cloud processing, including 3D shape classification, 3D object detection and tracking, 3D point cloud segmentation, 3D point cloud registration, 6-DOF pose estimation, and 3D reconstruction [16], [17], [18]....

    [...]

Journal ArticleDOI
TL;DR: A review on deep learning methods for semantic segmentation applied to various application areas and points out a set of promising future works to help researchers decide which are the ones that best suit their needs and goals.

844 citations


Cites background from "Multi-view self-supervised deep lea..."

  • ...Zeng et al.[112] present an object segmentation approach that leverages multi-view RGB-D data and deep learning techniques....

    [...]

Proceedings ArticleDOI
01 Jul 2017
TL;DR: 3DMatch is presented, a data-driven model that learns a local volumetric patch descriptor for establishing correspondences between partial 3D data that consistently outperforms other state-of-the-art approaches by a significant margin.
Abstract: Matching local geometric features on real-world depth images is a challenging task due to the noisy, low-resolution, and incomplete nature of 3D scan data. These difficulties limit the performance of current state-of-art methods, which are typically based on histograms over geometric properties. In this paper, we present 3DMatch, a data-driven model that learns a local volumetric patch descriptor for establishing correspondences between partial 3D data. To amass training data for our model, we propose a self-supervised feature learning method that leverages the millions of correspondence labels found in existing RGB-D reconstructions. Experiments show that our descriptor is not only able to match local geometry in new scenes for reconstruction, but also generalize to different tasks and spatial scales (e.g. instance-level object model alignment for the Amazon Picking Challenge, and mesh surface correspondence). Results show that 3DMatch consistently outperforms other state-of-the-art approaches by a significant margin. Code, data, benchmarks, and pre-trained models are available online at http://3dmatch.cs.princeton.edu.

711 citations


Cites methods from "Multi-view self-supervised deep lea..."

  • ...We evaluate on the testing split of the Shelf&Tote dataset using the error metric from [44], where we report the percentage of pose predictions with error in orientation smaller than 15◦ and translations smaller than 5cm....

    [...]

  • ...object models to segmentation results from [44]....

    [...]

  • ...In our first experiment, the task is to register pre-scanned object models to RGB-D scanning data for the Shelf & Tote benchmark in the Amazon Picking Challenge (APC) setting [44], as illustrated in Fig....

    [...]

Posted Content
TL;DR: This work introduces PoseCNN, a new Convolutional Neural Network for 6D object pose estimation, which is highly robust to occlusions, can handle symmetric objects, and provide accurate pose estimation using only color images as input.
Abstract: Estimating the 6D pose of known objects is important for robots to interact with the real world. The problem is challenging due to the variety of objects as well as the complexity of a scene caused by clutter and occlusions between objects. In this work, we introduce PoseCNN, a new Convolutional Neural Network for 6D object pose estimation. PoseCNN estimates the 3D translation of an object by localizing its center in the image and predicting its distance from the camera. The 3D rotation of the object is estimated by regressing to a quaternion representation. We also introduce a novel loss function that enables PoseCNN to handle symmetric objects. In addition, we contribute a large scale video dataset for 6D object pose estimation named the YCB-Video dataset. Our dataset provides accurate 6D poses of 21 objects from the YCB dataset observed in 92 videos with 133,827 frames. We conduct extensive experiments on our YCB-Video dataset and the OccludedLINEMOD dataset to show that PoseCNN is highly robust to occlusions, can handle symmetric objects, and provide accurate pose estimation using only color images as input. When using depth data to further refine the poses, our approach achieves state-of-the-art results on the challenging OccludedLINEMOD dataset. Our code and dataset are available at this https URL.

555 citations


Cites background from "Multi-view self-supervised deep lea..."

  • ...Several datasets and approaches have been introduced for the specific setting in the APC [14], [15]....

    [...]

Proceedings ArticleDOI
01 Oct 2017
TL;DR: This paper proposes a simple approach to generate large annotated instance datasets with minimal effort and outperforms existing synthesis approaches and when combined with real images improves relative performance by more than 21% on benchmark datasets.
Abstract: A major impediment in rapidly deploying object detection models for instance detection is the lack of large annotated datasets. For example, finding a large labeled dataset containing instances in a particular kitchen is unlikely. Each new environment with new instances requires expensive data collection and annotation. In this paper, we propose a simple approach to generate large annotated instance datasets with minimal effort. Our key insight is that ensuring only patch-level realism provides enough training signal for current object detector models. We automatically ‘cut’ object instances and ‘paste’ them on random backgrounds. A naive way to do this results in pixel artifacts which result in poor performance for trained models. We show how to make detectors ignore these artifacts during training and generate data that gives competitive performance on real data. Our method outperforms existing synthesis approaches and when combined with real images improves relative performance by more than 21% on benchmark datasets. In a cross-domain setting, our synthetic data combined with just 10% real data outperforms models trained on all real data.

497 citations


Cites background from "Multi-view self-supervised deep lea..."

  • ...More recently, deep learning based approaches in computer vision are being adopted for the task of pose estimation of specific objects[33, 53, 54]....

    [...]

References
More filters
Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Multi-view self-supervised deep lea..." refers methods in this paper

  • ...To leverage features trained from a larger image domain, we use the sizable FCN-VGG network architecture from [18] and initialize the network weights using a model pre-trained on ImageNet for 1000-way object classification....

    [...]

  • ...More explicitly, we train a VGG architecture [18] Fully Convolutional Network (FCN) [2] to perform 2D object segmentation....

    [...]

Journal ArticleDOI
TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

30,811 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract: Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

28,225 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Abstract: Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.

21,729 citations

Journal ArticleDOI
Paul J. Besl1, H.D. McKay1
TL;DR: In this paper, the authors describe a general-purpose representation-independent method for the accurate and computationally efficient registration of 3D shapes including free-form curves and surfaces, based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point.
Abstract: The authors describe a general-purpose, representation-independent method for the accurate and computationally efficient registration of 3-D shapes including free-form curves and surfaces. The method handles the full six degrees of freedom and is based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point. The ICP algorithm always converges monotonically to the nearest local minimum of a mean-square distance metric, and the rate of convergence is rapid during the first few iterations. Therefore, given an adequate set of initial rotations and translations for a particular class of objects with a certain level of 'shape complexity', one can globally minimize the mean-square distance metric over all six degrees of freedom by testing each initial registration. One important application of this method is to register sensed data from unfixtured rigid objects with an ideal geometric model, prior to shape inspection. Experimental results show the capabilities of the registration algorithm on point sets, curves, and surfaces. >

17,598 citations